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Speech recognition is a popular research topic that analyzes human speech. In addi-
tion to understanding the spoken message, it is beneficial to know who is speaking.
This thesis studies speaker recognition and presents a machine learning based sys-
tem for identifying the speakers from audio streams. Our implementation is based
on Mel-frequency cepstral coefficients (MFCC) and recurrent neural networks.

The system is developed and evaluated on AMI Meeting Corpus dataset. The
dataset contains annotated meeting recordings with typically four participants in
each. Our system processes the audio files of the recordings in 20 millisecond slices
and produces a list of active speakers at each time step.

We measure the performance of our system using various metrics. The results in-
dicate that our system is capable of identifying the speakers with decent accuracy.
The best classifier model that we examined is a 1-layer long short-term memory
(LSTM) neural network with layer size 256. Neural networks that are more com-
plex than it do not seem to improve the classification results, but they suffer from
increased training times. We also suggest alternative classifications methods for
future research.
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LAURI NISKANEN: Monen puhujan tunnistaminen takaisinkytkeytyvillä neu-
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Puheentunnistus on suosittu tutkimusalue, jossa analysoidaan ihmisten puhetta. Pu-
hutun viestin ymmärtämisen lisäksi on hyödyllistä tietää kuka puhuu. Tässä diplomi-
työssä tutkitaan puhujantunnistusta ja esitellään koneoppimiseen perustuva järjes-
telmä puhujien tunnistamiseksi äänivirroista. Toteutus perustuu MFCC-piirteisiin
ja takaisinkytkeytyviin neuroverkkoihin.

Järjestelmän kehittämiseen ja testaukseen käytetään AMIMeeting Corpus -aineistoa,
jossa on aikaleimallisesti litteroituja kokousäänitteitä. Yhdessä kokouksessa on tyy-
pillisesti neljä osallistujaa. Järjestelmä käsittelee äänitallenteita kahdenkymmenen
millisekunnin siivuissa ja tuottaa jokaiselle ajanhetkelle listan aktiivisista puhujista.

Järjestelmän suorituskykyä mitataan erilaisilla metriikoilla. Tulokset osoittavat, et-
tä järjestelmä kykenee tunnistamaan puhujia kohtuullisella tarkkuudella. Paras tar-
kastelluista luokitinmalleista on yksikerroksinen LSTM-neuroverkko, jossa kerroksen
koko on 256. Tätä monimutkaisemmat neuroverkot eivät vaikuta parantavan luoki-
tustuloksia, mutta niiden opettamiseen kuluu enemmän aikaa. Ehdotamme myös
vaihtoehtoisia luokitusmenetelmiä jatkotutkimuskohteiksi.
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1 INTRODUCTION

For a long time computers have been better than any human in doing calculations
or simple repetitive tasks. However, tasks that require deeper understanding, cre-
ativity, or imagination have been very hard for computers to do. Only recently
computers have begun to conquer many of these problems. For example, research
topics like computer vision, robotics, natural language processing, and automated
medical diagnosis have been greatly advanced with the help of modern machine
learning [12, 18, 35, 50].

These hard problems are typically so complex that it becomes impossible for a
programmer to manage all possible cases in a systematic way. The solution is to use
data-driven statistical methods to reduce the dimensionality of the task. Machine
learning is the study of algorithms that make predictions from collected data. In
contrast to classical computer algorithms, machine learning algorithms are typically
somewhat general and data is in a very important role. The quality, quantity, and
representation of the data can have huge impact on the predictions. The recent
success of machine learning is a combination of theoretical advances, more and
more extensive data collection, and the availability of high performance graphics
processing units (GPU). [48]

One important problem area where computer systems have become better with
machine learning is processing human speech. Speech recognition is an especially
popular research topic in which the textual message of speech is analyzed. However,
human speech also contains information about the age, gender, emotion, and identity
of the speaker. In this thesis, we focus on speaker recognition and study how the
identity of a speaker correlates with audible features. [49, 54]

Speaker recognition has a wide range of possible applications. One of them is an-
notating who speaks when in meeting recordings or other audio tracks. It could
also be used for improving speech controlled home automation systems with mul-
tiple users. Voice commands could select their default parameters and preferences
based on who gave the command. For example, a specific personal calendar could
be selected when a new event is being created. Speaker recognition has also been
used as a biometrical component for customer verification in financial services and
in criminal investigations [43, 51].

We implement a machine learning system that can identify speakers from given
audio samples based on how the voices of individual speakers sound different. The
system is applied to a dataset containing recordings of meetings. Each meeting
has typically four attendees having natural conversations. Our system analyzes the
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audio recording in slices and tries to determine who is speaking at each time point.
People mostly speak in turns, but it is not uncommon that two or more people are
speaking over each other. Meetings also have brief parts where nobody is speaking.
To accommodate these situations, our system does not simply name a single speaker
per time point, but instead outputs a list of active speakers. Since this list of speakers
is given at each point in time the output for the whole recording is two dimensional
as shown in Figure 1.

Figure 1: A simplified example of the program output, where A, B, and C are different
speakers. The filled segments represent times where each speaker is active during the audio
track.

Our system is based on a recurrent neural network classifier. Recurrent neural
networks have the ability to remember past information to aid future predictions.
This way the system can learn that one speaker is often active for some time before
the speaker changes. During difficult points in the audio track the system can
support its decisions by the understanding of the previous moments. We compare
different neural network models and show how their hyperparameters affect the
predictions.

Chapter 2 has an introduction to speaker recognition. Chapter 3 explains how ma-
chine learning and neural networks can be used to achieve our goal. Chapter 4
presents our speaker recognition implementation and Chapter 5 analyzes the per-
formance of our methods. Chapter 6 has concluding discussion and proposed topics
for future research.
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2 SPEAKER RECOGNITION

Speaker recognition aims to detect on which parts of an audio track someone is
speaking and to identify who the speakers are on each of those parts. There are
many ways to recognize speakers. One approach is to use multiple microphones
with known locations in relation to the speakers [61]. It is also possible to do
speech recognition on the text of the speech and then recognize one or more specific
phrases, for example have the speakers say their name or a password. However, in
this thesis we are studying text-independent methods, where we only use acoustic
characteristics of speech irrespective of what is being said, and without using the
location of the microphones. [28]

This kind of recognition is possible, because people have individual voices. The
differences in the voices are mainly caused by anatomical differences in the vocal
tract. The shape of the vocal tract produces different resonances in the voice,
also called formants. Other affecting factors include the anatomy of the lungs and
the trachea. These differences in the voices can be analyzed using the frequency
spectrum of the audio. [7]

Traditionally speaker recognition has been split to two phases: speaker diarization
and speaker identification. The purpose of speaker diarization is to split an audio
track into segments with only one speaker in each and also separate parts where
nobody is speaking [65]. The goal of speaker identification is to then detect the
identity of the speaker in each segment [54].

However, the traditional approach has some limitations. First, diarization systems
often need to process a whole file at a time and speaker identification is typically done
only after segmentation. This means that speaker recognition cannot be done live on
an audio stream. Second, people often interrupt each other or talk simultaneously
when trying to take the floor. This cannot be accurately represented with one-
speaker segments.

To resolve these issues, it is possible to do diarization and identification jointly in one
pass. Instead of telling who is speaking on each segment, we recognize the speaker
at each time frame. The idea of live recognition has been researched by Vinyals
and Friedland [67]. As we avoid needing the one-speaker segments we can take a
step further and do multi-label speaker recognition by giving a list of simultaneous
speakers for each time frame.

Speaker recognition systems contain two main components: feature extraction and
feature matching. The purpose of feature extraction is to represent the audio signal
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of the examined speech in a compressed form where useless information is filtered
out. There are many speech feature extraction methods such as linear prediction
coding (LPC) [46] and Mel-frequency cepstral coefficients (MFCC) [13]. The purpose
of feature matching is to connect the extracted speech features to the speaker identity
or otherwise classify or cluster them. Feature matching techniques that are used
with speech include dynamic time warping (DTW) [58, 49], hidden Markov models
(HMM) [2, 53], Gaussian mixture models (GMM) [57, 54], vector quantization (VQ)
[14, 45], and artificial neural networks (ANN) [16, 38, 39, 47]. [1, 28]

This thesis presents and analyzes a live multi-label text-independent speaker recogni-
tion system with Mel-frequency cepstral coefficients (MFCC) as the speech feature
extraction method and recurrent neural network (RNN) as the feature matching
method. Next, we introduce the theory behind the vocal feature extraction meth-
ods that are needed for our implementation. The neural network components are
covered in Chapter 3.

2.1 Frequency spectrum

Digital audio streams are typically represented with pulse-code modulation (PCM) [4].
It is a time domain representation where the amplitude of the audio signal is sampled
with regular intervals. High quality audio signals are typically stored with 44.1 kHz
or 48 kHz sampling rate.

However, in speaker analysis we are interested in the high-level features of the audio
signal. Individual amplitude samples of the one-dimensional PCM audio signal do
not directly correlate with anything that would be useful for speaker recognition.
The solution is to transform the signal to a more useful format. Practically all vocal
feature extraction methods used in speaker recognition are based on distinguishing
the individual frequency modes, or formants, using the frequency spectrum of the
speech sample [15].

The spectrum can be calculated using discrete Fourier transform (DFT) [27], which
converts the audio samples from the time domain to the frequency domain. In the
time domain we can see how the amplitude changes over time, but in the frequency
domain we can analyze how the audio frequencies of the signal behave. Discrete
Fourier transform is defined by

Xk =
N−1∑
n=0

xn · e−i2πkn/N , for k = 0, . . . , N − 1,
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where x0, x1, . . . , xN−1 represents uniformly spaced time domain samples and
X0, X1, . . . , XN−1 is a sequence of complex numbers containing information about
the amplitude and phase of the frequencies in the signal.

2.2 Mel-frequency cepstrum

discrete
Fourier transform

power spectrum

logarithm

Mel-weighting

discrete
cosine transform

audio slices

MFCC
feature vector

Figure 2: Pipeline for MFCC feature
vector calculation.

One step further to make the signal more
compact and better suited for speaker classi-
fication is to calculate the Mel-frequency cep-
strum [13]. The Mel-frequency cepstral coef-
ficients (MFCC) are widely used as a feature
vector in the field of automated speech anal-
ysis [40, 55, 70, 72]. The Mel scale [64] is a
scale of audio pitches derived from listening
experiments with the purpose of mimicking
how humans perceive audio signals [40]. A
frequency f given in hertz can be converted
to mels using the formula [52]

fm = 1127 ln

(
1 +

f

700 Hz

)
mel.

Cepstrum of signal x can be defined as

C = DCT{log |DFT [x]|2},

where DFT is the discrete Fourier transform
and DCT is the discrete cosine transform
[5]. In Mel-frequency cepstrum, the frequency
bands are spaced based on the Mel scale [40].
Mel-frequency cepstrum is calculated by ap-
plying the Mel-weighting function wm before the discrete cosine transform [70]:

Cm = DCT{wm(log |DFT [x]|2)}.

The computation flow for the Mel cepstrum is illustrated in Figure 2. The discrete
Fourier transform is used to calculate the power spectrum of the audio signal. Phase
information can be discarded because it has been shown to be not as important. The
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logarithm of the spectrum is taken, because it approximately matches the perceived
loudness of the signal. Finally, after scaling the signal to the Mel scale, discrete
cosine transform is taken to reduce the number of parameters. This is useful be-
cause the calculated Mel-spectral vectors consist of highly correlated components.
Karhunen–Loève transform [33] would be more precise, but with speech signals dis-
crete cosine transform is commonly used to approximate it. [40]
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3 MACHINE LEARNING

Machine learning can be applied to a wide range of problems and there are multiple
ways to use the collected data to solve the machine learning problems. In this thesis,
we are mainly interested in classification, where the goal is to assign a category for
each given item. Next, we will explain how classification can be implemented with
supervised learning using artificial neural networks.

3.1 Supervised learning

In classification, the goal is to train a prediction model, a classifier, that tells to which
category a sample belongs based on its features. The classifier can be trained using
example data. Each example has a vector of features and a target label. Features
are the input attributes that describe the sample. Labels are the categories to which
each sample belongs. [48]

The data must be split to three sets: training samples, validation samples, and test
samples. Training samples are used for training the classifier model. Validation
samples are used to compare different methods and to adjust the model parameters.
Test samples are used to test the performance of the trained classifier. It is important
that test samples are not available for the algorithm during the learning stage. The
classifier model can be tested by using the model to predict where the test samples
should belong based on its features and comparing the result with the sample label
that represents the truth. [3]

In supervised learning the algorithm is given access to both the training features
and training labels. In contrast, in unsupervised learning the algorithm can only
see unlabeled features. There are also other scenarios that differ in how the data is
available to the algorithm. [48]

There are many algorithms and models that can be trained to make classification
predictions [3]. Next, we will present one of them: artificial neural networks.

3.2 Artificial neural networks

Neural networks were first researched as a way to represent biological information
processing with mathematics by McCulloch in 1943 [47]. The term has since been
associated with numerous different models, most of which are only remotely related
to biology if at all. Neural networks consist of a fixed number of interconnected para-
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Figure 3: The components of an artificial neuron.

metric units, or artificial neurons, whose parameters can be adjusted in the training
phase so that they and the network as a whole produce the desired output. [3]

There are multiple models for artificial neurons, but in the common basic case a
neuron can be defined by the parts shown in Figure 3. Each neuron has a set of
connecting links to predecessor neurons with weights associated to each link. The
adder component takes the output values from the connected predecessor neurons,
multiplies them by the link weights, and calculates the sum of these values. A bias
term can also be added to the sum. Activation function is a function that takes
the calculated sum as an input and produces an output value for the neuron. Some
commonly used activation functions are listed in Table 1. [29]

rectified linear unit

{
0 for x < 0

x for x ≥ 0

logistic sigmoid
1

1 + e−x

hyperbolic tangent tanh(x) =
ex − e−x

ex + e−x

softplus ln(1 + ex)

Table 1: Common activation functions [21].
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This basic neuron model can be described mathematically as the equation

y = ϕ

(
b+

m∑
j=1

wjxj

)
,

where y is the output value of the neuron, ϕ is the activation function, b is the
bias term, w1, w2, . . . , wm are the link weights, and x1, x2, . . . , xm are the connected
predecessor neuron values. [29]

A feedforward neural network is composed of individual neurons arranged in layers as
shown in Figure 4. The links between the neurons are defined so that the predecessor
of a neuron is in the preceding layer. Some of the neurons are selected to be in the
output layer of the network. Their value is visible as the output vector of the whole
network. Similarly, some of the neurons are used as the input to the network. The
input neurons do not have any predecessors neurons, but instead their value is given
from outside of the network. Neurons that are neither input nor output units are
called hidden units as they are not directly exposed to the outside. [3]

input 
layer

hidden layers
output 
layer

Figure 4: A simplified feedforward network composed of neurons arranged in layers.

Typically the network structure is expressed by defining the number of hidden layers
in the network and the number of units in each layer, also called the size of the
layer [3]. Different layers may have different sizes. The input and output layer sizes
are usually defined by the intended use of the network. The number and sizes of
hidden layers can be adjusted based on the desired network complexity. Different
layers may also use different activation functions or extended neuron models, some
of which we will examine later. These parameters related to the structure of the
network are called the hyperparameters of the network. They are typically not
changed during the training process. However, next we see how other parameters,
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especially the neuron link weights, are not fixed in place but instead being adjusted
dynamically during neural network training.

3.3 Backpropagation

Training a neural network is a process where the neuron link weights, and some-
times other parameters, are adjusted so that the network can produce the desired
output values for given input values [29]. In other words, the internal parameters of
a neural network are modified so that the network can approximate a given func-
tion. Backpropagation [68] is a popular and effective algorithm for training neural
networks.

In supervised learning, the neural network is trained with a set of labeled training
examples. These examples, or training samples, are pairs of input and output values.
When the network is trained to do classification, the input values are called features,
which describe a given sample in some way. The output vector of the network is
used for encoding the class of the sample. For example, in a binary classification
case there are positive and negative samples, and the class of the sample can be
encoded simply by using one neuron in the output layer and by differentiating the
class by the value of the neuron (e.g. 0 or 1). [29]

Before starting the training process it is not known what values the neuron link
weights should have. They can be initialized randomly. The backpropagation algo-
rithm works by iterating training samples making a forward pass and a backward
pass for each of them. In the forward pass, the values of the input units are set
according to the features of the sample. Then, the neuron functions are evaluated
propagating the signal towards the output layer. This process produces values for
the output neurons of the network. The output values are compared with the ex-
pected output vector, which in supervised learning is known for each sample. In the
backward pass the neuron link weights are adjusted so that the difference between
the expected output vector and the produced output vector decreases. The goal of
the training process is to iteratively tweak the parameters in the network so that
the response produced in the forward pass matches the desired one more and more
closely. [29]

There are multiple ways to determine how the parameters should be adjusted. Math-
ematically speaking, we need to define a loss function that the training process is
trying to minimize. For binary classification the loss function can be the logistic
sigmoid function on an output neuron [3]. We will later examine the choice of the
loss function and the encoding scheme for output neurons for various classification
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problems. The gradient of the loss function is useful in calculating the needed change
to the parameters. To decrease the loss, a small step can be taken in the direction
of the negative gradient [3]:

an+1 = an − η∇E(an),

where an is the value of the examined parameter before the adjustment and an+1

after it, ∇E is the gradient of the loss function, and η is a parameter called the
learning rate. Learning rate determines how great the adjustment steps are. This
way of adjusting the network is known as stochastic gradient descent if the training
samples are iterated randomly evaluating the loss function one sample at a time [56].

3.4 Multi-label classification

Basic single-label binary classification answers the yes–no question "Does the sample
match the criteria?" In practice the question can be for example "Is the object
in the given image a cat?" In these cases, the neural network output is typically
encoded as a single neuron whose value is either one or zero. Values in between
may represent varying levels of uncertainty. This encoding scheme can be extended
to support multiple mutually exclusive classes, answering for example the question
"Is the animal in the image a cat, a dog, or a horse?" With n classes the output
is often encoded with n neurons so that one neuron has the value one and the rest
have value zero. Uncertainty can be encoded by assigning weighted values to the
neurons so that the sum of the values of all output neurons is one. This is called
multiclass or multinomial classification with one-hot encoding. [66]

Another way to extend the scheme is to allow multiple labels that are not mutually
exclusive. The classification question could be "Which of the listed animals, if any,
are present in the image?" Multi-label classification answers to n questions at the
same time. Often these are binary questions and the output can be encoded with n
neurons whose values are all separately between one and zero. It is also possible to
further extend the output encoding to allow more complicated structures. [66]

We have argued that the structure of the output layer depends on the type of clas-
sification. In addition, the activation function of the output layer neurons and the
classifier loss function must be chosen accordingly. In single-label binary classifi-
cation, the activation function is typically logistic sigmoid and the loss function is
logistic loss. There are also many alternative activation and loss functions for this
case. In multiclass classification, the natural choice is to use softmax activation and
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categorical cross entropy loss, which is an extension of logistic loss. Softmax is a
function that squashes a vector of values in between zero and one so that their sum
is one. It is mathematically defined as

ϕi(x) =
exi∑n
k=1 e

xk
for i = 1, . . . , n,

where x1, x2, . . . , xn are the input values [3]. In binary multi-label classification
logistic sigmoid can be used as the activation function for all the output neurons
separately. The multi-label extension of logistic loss is called binary cross entropy
loss. These activation and loss functions for different classification problems are
listed in Table 2. [22]

classification type output activation loss function
binary single-label logistic sigmoid logistic loss

multiclass softmax categorical cross entropy
binary multi-label logistic sigmoid binary cross entropy

Table 2: Common output layer activation functions and loss functions for different clas-
sification problems.

Choosing the activation and loss functions correctly is important. For example, if
softmax and categorical cross entropy loss were used in a multi-label classification
problem where the labels are not actually mutually exclusive, the network would
be unable to make an output with two simultaneously active labels and naïvely
interpreting the output values would produce somewhat correlated but as a matter
of fact meaningless results. The other way around, if a mutually exclusive multiclass
classifier used separate logistic sigmoid activations instead of softmax, the produced
probability distribution would be invalid because the total probability would not be
exactly one.

3.5 Overfitting and regularization

A supervised model should be able to repeat predictions that it was given in the
training phase. If the model is too simple, it might fail to do this because it is
not able to capture all the details of the training samples. This phenomenon is
called underfitting. However, it is also very important that the model can generalize
and make good predictions about new samples. It is not enough to remember all
the details of the training samples since the number of training samples is in often
limited and the samples may contain noise. By noise we mean random details in
the features that do not represent the underlying properties of the data. When the
model learns too much of this noise instead of the intended structure, it is said to
be overfitting. An example of this behavior is shown in Figure 5. [6]
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Figure 5: The solid line is a precise fit to the data points, but the dashed line may
generalize better when making predictions.

It is beneficial to use a model structure that is so simple that it cannot learn all the
noise in the data so it must instead approximate the samples it was given in order
to minimize the loss function. This approximate often generalizes better producing
good predictions for unknown samples. In neural network models a natural way
to adjust the complexity and learning capacity is to choose the number of neurons
accordingly. One way to prevent overfitting is to train multiple models and average
the predictions. However, there are regularization techniques that are designed to
prevent overfitting with less computation. [36]

Overfitting can be visualized using learning curves. These curves show validation
loss as a function of training time. The validation loss of an ideal model would
monotonically converge to a global minimum. If the model overfits, the validation
loss starts to increase after a point. Early stopping is a popular regularization
method that leverages this behavior by stopping the training when the loss starts
to go up. Figure 6 has learning curves for two example models. The dashed line
converges and the solid line represents a model that overfits. [60]

training time

v
a
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a
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o
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o
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Figure 6: Learning curves for two models showing loss convergence and overfitting.
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Dropout [63] is a commonly used regularization method for neural networks [19].
Dropout works by randomly dropping neurons from the network during training as
illustrated in Figure 7. This prevents the neurons from relying too much on each
other and forces the network to create redundant paths. After the training phase
all neurons are enabled. The output of single neurons and ultimately the output of
the whole network is averaged over multiple paths making the results more robust
against noise. Using dropout will increase the training loss of the network, but if
working properly it will lower the validation loss. [63]

Figure 7: With dropout random neurons are disabled in the training phase.

3.6 Recurrent neural networks

Recurrent neural networks (RNN) [32] were first introduced by Hopfield in 1982.
They gained popularity after Hochreiter and Schmidhuber discovered long short-
term memory (LSTM) [30] networks in 1997. Long short-term memory networks
outperform many other models in multiple fields including natural language text
processing and speech recognition [17, 44]. Gated recurrent units (GRU) [9] have
also been proved to have similar performance with LSTM networks.

Recurrent neural networks are applied to sequences like a stream of text, audio, or
time series data points. In contrast, traditional neural networks must be applied to
fixed-length vectors and cannot handle variable-length sequences. Recurrent neural
networks are also able to output variable-length sequences. Recurrent neural net-
works are based on recurrent neurons that extend the basic neuron model by adding
connections to earlier neurons along the sequence. This effectively enables recurrent
neurons to remember values over time. [24]

An LSTM neuron contains an input gate, a memory cell, a forget gate, and an
output gate as shown in Figure 8. The dashed lines represent connections along the
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Figure 8: The structure of a long short-term memory neuron.

sequence. The LSTM gates regulate how the information is stored and accessed from
the cell allowing the neuron to remember a value for a time it is useful but no longer
than necessary. This structure tries to avoid the vanishing gradient problems that
often limit the usefulness of recurrent neural network models [31]. An extension of
the backpropagation algorithm, called backpropagation through time (BPTT) [69],
can be used to efficiently train recurrent neural networks. [20]

The forward pass of an LSTM neuron is defined by equations [20]

it = σ(wixt + uiyt−1 + bi)

ft = σ(wfxt + ufyt−1 + bf )

ot = σ(woxt + uoyt−1 + bo)

ct = it tanh(wcxt + ucyt−1 + bc) + ftct−1

yt = ot tanh(ct),

where xt is the input vector, ft, it, and ot are the activation vectors of the forget
gate, the input gate, and the output gate, respectively, ct is the cell state vector, yt
is the output vector of the neuron, σ is the logistic sigmoid function, and w, u, and
b are the weight matrices and the bias vectors.
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4 IMPLEMENTED METHOD

We implemented a multi-label speaker recognition model that can identify known
speakers in a given audio track. For each trained speaker, the model outputs a prob-
ability of speaking at each time frame in the audio track. The output is visualized
in Figure 9. In this model, it is possible that multiple speakers are speaking at the
same time. The model is trained with an audio track and a synchronized binary
label track for each speaker. The label track used in training has the same structure
as the program output, but with only binary values at each time point as shown in
Figure 1 in the introduction chapter.

Figure 9: Program output with predicted probabilities shown as grayscale values.

The pipeline for making speaker activity predictions is shown in Figure 11 (see the
next page). The input audio track is given in PCM format. It is sliced to time frames
of 20 milliseconds and 18 MFCC audio feature values are calculated for each frame.
These MFCC features frames are given to the classifier model and it will output
a probability vector for each frame. The probabilities represent the likelihood of
each speaker being active during the frame. With an ideal classifier the output
probabilities would mimic the binary ground truth labels where each speaker is
either speaking or not on each time frame. However, in practice the output contains
time frames with uncertain predictions which may be incorrect.

In the training phase (Figure 10) the pipeline has the same preprocessing and feature
extraction stages, but instead of making predictions in the classification stage the
model is given both the MFCC features vectors and the ground truth labels. The

trained
model

speaker
labels

MFCC
features

audio
slices

audio
track

Figure 10: Training the classifier model.
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Figure 11: Pipeline for making speaker activity predictions on a given audio track.
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model will try to fit its internal parameters so that it will be able to make useful
predictions.

The classifier model, as shown in Figure 12, is a neural network with LSTM layers
and a densely connected output layer. The MFCC feature frames are given as the
input sequence for the first LSTM layer. During training we limit the sequence to
200 time steps. The number and dimensionality of the LSTM layers can be adjusted.
The LSTM layers also have an adjustable dropout parameter.

time

dense

LSTM

LSTM

dense

LSTM

dense

LSTM

18 MFCC 
values

speaker 
probabilities

dense

LSTM

LSTM

dense

LSTM =
LSTM LSTM LSTM

Figure 12: The structure of the classifier model with two LSTM layers.

The LSTM model can be given a bit more information by allowing it to see some
time steps into the future. This can be done by delaying the output targets by a
fixed number of time steps during training [23]. The output will be delayed by the
same amount during evaluation, but the target delay does not need to be very long
and so it does not greatly affect the ability of doing live prediction. If live operation
is not required or if greater delays are acceptable, a bidirectional recurrent neural
network (BRNN) [62] could be used to utilize future information more extensively.
However, bidirectional recurrent neural networks are not studied in this thesis.

We have implemented the model in Python using Keras [11], an open-
source neural network library. MFCC audio features are generated with
python_speech_features library [42].
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5 EVALUATION

In this chapter, we present the datasets and evaluation metrics we used and then
analyze the performance of our model with different hyperparameter combinations.
We try to select the best model using our validation dataset and then compare the
results with a test dataset that was not used at all before the final tests.

5.1 Datasets

Our main dataset for model development is AMI Meeting Corpus [8]. It is a publicly
available, Creative Commons licensed set of recorded meetings with multiple audio
tracks along with various additional signals and annotations. The meetings were
recorded in English by native and non-native speakers in acoustically different rooms
using various kinds of microphones. Our interest is mainly in the high quality
synchronized transcript that we can use to train and test speaker recognition models.
The transcript annotations in the dataset are in an XML-based format that requires
some preprocessing to fit our use case.

AMI Meeting Corpus consists of recording sessions. The sessions have unique iden-
tifiers, for example ES2016. Each session has a fixed set of participants and meet-
ings they recorded. Typically a session has four speakers in four meetings. In the
dataset each speaker have been assigned a unique identifier, for example MEO062
or FEE064. The first letter in the identifier corresponds to the gender of the speaker
(M=male, F=female). These identifiers are shown in some of the result visualiza-
tions later. Each session has a new group of participants, but some participants
have joined multiple sessions. Most of the meetings are simulated for the dataset,
but with the aim to have natural, uncontrolled conversations. [8]

Each meeting in the dataset is recorded with multiple sets of different microphones.
The dataset includes individual audio tracks for each speaker that could be used for
speaker recognition based on the track volumes alone. However, they are not used
in this thesis, because we are interested in a classifier that can distinguish different
speakers from a single audio track. It is possible that the classifier would overfit
to the properties of a specific microphone type. We want to test if our system can
make good predictions without relying on the learned microphones and so we use a
different set of microphones in the training phase. Training uses sound mixed from
lapel microphones and evaluation uses mixed headset microphone tracks.

We train our speaker recognition model for each group of speakers separately. Out of
the four meetings in a session, meetings B, C, and D are used for training and the re-
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maining meeting A for validation. Figure 13 illustrates the structure of one recording
session. Our goal is to find a model and hyperparameter values that perform well on
all recording sessions with different groups of speakers. We have reserved sessions
with even numbered identifiers for model selection and hyperparameter adjusting
and the remaining ones are used only for testing.

validation

MEE061

MEO062

MEE063

FEE064

training

MEE061

MEO062

MEE063

FEE064

MEE061

MEO062

MEE063

FEE064

MEE061

MEO062

MEE063

FEE064

ES2016

Figure 13: The structure of one recording session, which consists of four meetings. Each
meeting has the same four participants.

5.2 Evaluation metrics

We want to analyze the performance of our models. This is needed for two purposes.
First, we want to compare different models and hyperparameters so that we can
select the best ones. This is done on the validation set. After selecting the best
model, we want to analyze its performance on an independent test set. We need
one or more evaluation metrics to produce numerical values that we can then use to
assess the quality of the model and for comparing the models with each other.

One metric we can use is the loss metric that the neural network optimizer uses to
train the network. In our multi-label case this metric is binary cross entropy loss
as discussed in Chapter 3.4. When training the network, this loss is calculated on
the training set. However, we can also calculate this metric on the validation set or
the test set. This is a good basic metric that is especially useful for analyzing if the
model starts to overfit.

In order to define the other metrics we use we first need to define some supporting
terms. Table 3 has a confusion matrix where binary prediction outcomes are divided
into four categories. The column is chosen based on the true label of the sample and
the row based on the predicted label. True positives and true negatives represent
correct predictions. [59]
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positive sample negative sample
predicted true positive false positive
positive (TP) (FP)
predicted false negative true negative
negative (FN) (TN)

Table 3: Confusion matrix with four prediction outcome categories.

Based on these outcome categories we can now define three useful measures

precision =
TP

TP+ FP
,

recall =
TP

TP+ FN
,

fall-out =
FP

FP+ TN
,

where TP, FP, FN, and TN are the number of samples in each category. [59]

Figure 14: An example receiver oper-
ating characteristic curve. The dashed
line represents random guessing.

The area under the receiver operating char-
acteristic curve (ROC AUC) is a metric that
is commonly used for model comparison [26].
The ROC curve is calculated by varying
the binary class discrimination threshold and
plotting recall as a function of fall-out. An ex-
ample of this curve is shown in Figure 14. The
area under the curve summarizes the quality
of a classifier as a single numerical value. The
ROC AUC score has been criticized as being
noisy and having some other issues when used
in model comparison, but nevertheless still re-
mains popular in machine learning. [25]

We use both binary cross entropy loss and ROC AUC score to compare the models
on the validation set. When evaluating the best model on the test set, we add one
more metric. Precision and recall are good measures that we could use as a pair.
Our final metric is F1 score, which combines precision and recall to one value by
taking their harmonic mean [59]:

F1 =

(
precision−1 + recall−1

2

)−1

To extend ROC AUC score and F1 score for multi-label classification we need to
decide how the results of each label are combined. There are two common possi-
bilities for this. We could add the total number of true positives, false positives,
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false negatives, and true negatives together from all of the labels and then use these
values to calculate the metrics. Doing it this way is called taking the micro aver-
age. The alternative is to calculate the macro average, where the metrics are first
calculated for each label separately and then the mean of those metrics becomes the
joined metric. Micro and macro averages calculate slightly different things and we
cannot say that one is necessarily better than the other. In this thesis we use macro
averages for the metrics. [71]

5.3 Hyperparameters

Our classifier model is not remarkably deep or otherwise complex. Yet there are still
many tweakable hyperparameters that have significant impact on the classification
result. The main hyperparameters are the number of stacked LSTM layers and
the size of those layers. As discussed in Chapter 3, larger networks are prone to
overfitting. To combat this, our third major hyperparameter is dropout. In this
part of the thesis, we are evaluating the different values for these hyperparameters
to see which combinations works the best. The hyperparameters to be tested and
the values we are going to choose from are listed in Table 4.

hyperparameter examined values
number of LSTM layers 1, 2
size of LSTM layers 16, 64, 256, 1024

dropout 0 % (disabled), 50 %
Table 4: Examined hyperparameters and their values.

The number of training steps can also be seen as a hyperparameter for the model. It
is expected that good classification results require a certain amount of training steps.
In an ideal case the classification accuracy would improve over time and converge to
some level. However, mainly due to overfitting, the accuracy may start to decrease
at some point with more training. We are trying to analyze these behaviors with
learning curves where classification accuracy is plotted as a function of training
epochs.

5.4 Results

First we examine a model with one LSTM layer and no dropout. The layer size
is varied to see how it affects the results. In Figure 15, there are two loss curves
for each tested LSTM layer size. The dashed lines represent training losses and the
solid lines validation losses. Initially, the losses decrease rapidly, but after around
epoch five the validation loss for all models except the one with layer size 16 start
to increase while training losses continue to decrease. This most likely indicates
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overfitting. Figure 16 has a ROC AUC score curve for each tested layer size. We
can see that scores increase on the very first epochs. On layer size 16 the score
continues to increase slowly, but the scores of the models with greater layer sizes
start to decrease.
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Figure 15: The effect of layer size on training loss (dashed lines) and validation loss (solid
lines).
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Figure 16: The effect of layer size on ROC AUC score.

Next, we test how adding dropout changes the results. Dropout may reduce over-
fitting allowing us to use larger network sizes. Figure 17 has learning curves with
training and validation losses for models with layer size 256 and dropout both en-
abled and disabled. Shaded regions are one standard deviation error bands for the
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variance between meetings. Enabling dropout increased training loss. As discussed
earlier in Chapter 3, this is only an artifact caused by dropout itself. Dropout makes
fitting to training data more difficult by design. The model with dropout has lower
validation loss on all epochs compared to the model without dropout. The curve
with dropout is converging and has less variance. In contrast, the validation loss
for the model without dropout has significantly more variance and starts to increase
after around five epochs of training showing overfitting. At this layer size, these
observations would support selecting the model with dropout over the one without.
We can further see the difference in Figure 18 where ROC AUC score is compared.
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Figure 17: The effect of dropout on training and validation losses (LSTM, layer size 256).
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Figure 18: The effect of dropout on ROC AUC score (LSTM, layer size 256).
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To find the best hyperparameter combination, we now test more layer sizes with
dropout enabled. Figure 19 shows how varying the layer size affects training and
validation losses when dropout is enabled. With dropout, the loss curves do not
start to increase anymore like in Figure 15. ROC AUC scores with dropout enabled
in Figure 20 are converging and reaching better values than without dropout in
Figure 16 where most of the scores started to decrease. It can be seen that dropout
is useful for reducing overfitting and making the models more stable.
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Figure 19: The effect of layer size on training and validation loss with dropout enabled.
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Figure 20: The effect of layer size on ROC AUC score with dropout enabled.

Among the tested layer sizes it would appear that 256 and 1024 are the best models
on both validation loss and ROC AUC score. Layer size 1024 may have marginally
better results, but the difference is very small. Layer size 64 is not far behind, but
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size 16 does not seem to be large enough to fully capture the underlying phenomena.
However, even with the layer size 16 the loss and score values are better with dropout
than without. This can be seen in Figures 21 and 22 where the model without
dropout is compared to models with dropout enabled. A curve for the model with
layer size 256 is also included in these figures for reference. At layer size 16, the
model learns initially a bit faster without dropout but the model with dropout
enabled will reach and exceed the performance with further training.

5 10 15 20 25 30 35 40
0

0.2

0.4

0.6

0.8

1

1.2

epoch

bi
na

ry
cr
os
s
en
tr
op

y
lo
ss

16, no dropout
16 with dropout
256 with dropout

Figure 21: Training and validation losses comparison of some models with dropout en-
abled and disabled.
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Figure 22: ROC AUC score comparison of some models with dropout enabled and dis-
abled.
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Plotting learning curves with the loss metrics and ROC AUC scores is a good way
to visualize how the classifier models learn. However, we can also visualize the
predictions made by our system. Figures 23, 24, and 25 have two rows for each
speaker in the meeting. The first row has ground truth labels showing when the
speaker was actually active. The second row has the predictions that the classifier
produced. Differences between the rows are mistakes in the prediction. The x-axis
is time in the audio track starting from the beginning of the meeting. The meetings
are longer, but for visualization reasons these figures are limited to the first ten
minutes.

The predictions in Figure 23 are made after only one epoch of training. At that
stage the classifier is still underfitted so the predictions are mostly uncertain and
include lots of random noise. Figure 24 has the same classifier and configuration,
but after 40 epochs of training. The prediction signal is now significantly stronger.
There are still some incorrect predictions, but most of the speaking segments are
correctly identified. For comparison, Figure 25 has the predictions for the same
meeting made by a classifier model with layer size 16 and dropout disabled. This
figure looks similar, but the predictions, especially for MEO062, have more mistakes
compared to Figure 24.

Figure 23: Predictions compared to ground truth labels after only one epoch of training
(layer size 256, dropout).
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Figure 24: Predictions after 40 epochs of training (layer size 256, dropout).

Figure 25: Predictions made by a model with layer size 16 and no dropout.
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Stacking another LSTM layer to the network model is a way to increase the learning
capacity. Figures 26 and 27 compare 1-layer and 2-layer models with layer size 256
and dropout enabled. The 2-layer model performs almost exactly the same as the
1-layer model with the same parameters. The simpler 1-layer model learns a bit
faster, but with more training the 2-layer model reaches the same results. The 2-
layer model may be marginally better, but the difference between the results is not
clear. It seems that the 1-layer model at this layer size is already complex enough
to accurately fit the problem.
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Figure 26: Loss comparison of 1-layer and 2-layer models with layer size 256 and dropout.
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Figure 27: ROC AUC comparison of 1-layer and 2-layer models with layer size 256 and
dropout.
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In order to determine if adding a second hidden layer increases the learning capacity
we compare 1-layer and 2-layer models with layer size 16 and dropout disabled. The
loss and ROC AUC score learning curves are shown in Figures 28 and 29. It can
be seen that the 2-layer model performs better with these parameters. Again, the
1-layer model learns initially faster, but the 2-layer model achieves better results
later.
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Figure 28: Loss comparison of 1-layer and 2-layer models with layer size 16.
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Figure 29: ROC AUC comparison of 1-layer and 2-layer models with layer size 16.

To further compare the parameter combinations, we test 2-layer models with each
layer size. The learning curves for each 2-layer model with different layer sizes are
shown in Figure 30 and 31. These curves look very similar to the 1-layer model
curves in Figures 19 and 20. Layer sizes 256 and 1024 are still the best ones. It
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seems that the 2-layer models take more training time to reach the same results and
there is no visible benefit in having 2 LSTM layers.
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Figure 30: The effect of layer size on training and validation loss with 2-layer models and
dropout enabled.
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Figure 31: The effect of layer size on ROC AUC score with 2-layer models and dropout
enabled.

Different models have different computational costs. Table 5 shows how training
speed differs for our models. The training speed depends on the underlying hardware
setup. In our case, the measurements were done on a system with Intel Core i5-
4670K processor and GeForce GTX 1060 (6GB) graphics processing unit. We can
see that models with layer size 1024 and all 2-layer models take significantly more
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time for training than the simpler models. The 2-layer model with layer size 1024
takes about ten times the training time compared to the smaller 1-layer models.
This gives us reason to select the 1-layer model with layer size 256 since the more
complex models did not achieve better accuracy results.

training time per epoch (s)
1 layer 2 layers

layer size 16 35.1± 0.78 73.8± 3.50
layer size 64 36.7± 1.94 72.1± 2.68
layer size 256 35.0± 1.01 74.0± 1.84
layer size 1024 121.9± 5.22 340.1± 13.89

Table 5: Training time for different models (dropout enabled).

Up to this point we have used a validation dataset that combines multiple recording
sessions. Using more data is good for achieving generalization as it is not desired to
optimize the system for any single case. The meetings in the recording sessions may
have differences that affect the classification performance. If we examine predictions
made for some specific session, the results may be deviated from the averages shown
before. The variance in the results in different sessions can be analyzed by calculat-
ing the metrics for each of them separately. This is done in Figure 32 where ROC
AUC scores are shown separately for five sessions. The results on some sessions are
significantly better compared to others. We can say that, for our classification mod-
els, the voices or the speaking patterns in IS1008 seem to be easier to classify than
in IS1000. The differences can also be seen by comparing the labels and predictions
for meetings ES2016a (Figure 24), IS1008a (Figure 33), and IS1000a (Figure 34).
No further analysis on the actual differences in the data is done in this thesis.
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Figure 32: ROC AUC score for individual validation set sessions (LSTM, layer size 256,
dropout).
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Figure 33: Predictions for meeting IS1008a (layer size 256, dropout).

Figure 34: Predictions for meeting IS1000a (layer size 256, dropout).
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As we can see, there is variation between the different recording sessions, but when
training the network again there is variation even if the exactly same meetings
are used. This is because the neural network optimization is a random process.
This can be seen in the shaded standard deviation error bands in Figure 32. In
previous figures with these shaded error bands, the variance comes mainly from the
difference between the recording sessions. Unlike them, the only source of variation
in the figure with the individual sessions is the randomness of the training process.
However, there is only a small amount of variation between the training instances.

So far we have used our validation dataset for model selection. While the validation
data was not available to the network optimizer itself, it is possible that by choosing
the best model structure and hyperparameters we have overfitted to the validation
data. We can compare the results with a new, unused test set. The best model
chosen for testing is a 1-layer LSTM network with layer size 256 and dropout enabled.
Table 6 has evaluation results for both the validation set and test set. Test set results
can be also seen in Figure 35, which has learning curves for the individual sessions in
our test set. This figure can be compared with Figure 32, which has similar learning
curves for the validation set sessions.

cross entropy loss ROC AUC score F1 score
validation set 0.510± 0.2053 0.942± 0.0426 0.762± 0.1588

test set 0.843± 0.2986 0.895± 0.0168 0.629± 0.0444
Table 6: Comparison of validation and test results (layer size 256, dropout, epoch 40).
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Figure 35: ROC AUC score for individual test set sessions (LSTM, layer size 256,
dropout).



35

We can see that there are noticeable differences in the results. The test set results
do not reach the same level of accuracy as the validation results. The difference in
the results would suggest that in our model selection process we chose the model
and hyperparameters that have the best results on the validation data, but that do
not necessarily generalize to new datasets. However, the meetings in the validation
set and the test set are completely different and it is possible that the differences in
the results are caused by the fact that the validation set happens to have meetings
that are easier to classify. In any case, we argue that even the test set results are
good showing that our speaker recognition system can make valid predictions.

We can also compare how the predictions made for the test set look. Figure 36 shows
predictions made for meeting IS1009a in our test set. The meeting is different so we
cannot directly compare it with the meetings showed earlier in Figures 24, 33, and 34,
but it can be seen that the predictions are mostly accurate.

Figure 36: Predictions for a test set meeting IS1009a (layer size 256, dropout).
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6 CONCLUSION

This thesis introduced the reader to the theory that is needed to understand our
experimental speaker recognition system. We developed a recurrent neural network
classifier that successfully performs multi-label speaker recognition on AMI Meeting
Corpus dataset. When given a meeting recording the classifier determines when
each of the participants in the meeting is speaking. The architecture that we chose
can be used for live prediction and it can identify multiple speakers who are active
simultaneously. We can see that a rather simple long short-term memory (LSTM)
network using MFCC features is sufficient for this task. We compared different
hyperparameters and noticed that by choosing good values for them can improve
the classification results and reduce computational requirements. The best model
was a 1-layer LSTM network with layer size 256. More complex models significantly
increase the computation cost, but do not improve the results.

One source of uncertainty in the measured results is the inaccuracies in the speaker
label annotations. AMI Meeting Corpus was chosen because the annotations seem
to be very good, but we cannot expect them to be absolutely correct. We have also
limited the speaker label time resolution to 20 milliseconds.

The main limitation of our implementation is that it only recognizes known speakers
that were present in the training material. This is caused by our supervised clas-
sification architecture. Unknown speakers could be supported with unsupervised
learning that only clusters similar utterances together without actually identifying
the speakers. However, the supervised approach may be better if the goal is to only
recognize a few designated speakers for whom we have speech samples. Further
research could be done on determining the required amount of training samples per
speaker and on minimizing that amount.

We used only the AMI Meeting Corpus dataset in our experiments. Further test-
ing could be done with other datasets that do not need to be limited to meeting
recordings. In addition, existing data could be augmented to increase the amount
of training samples. Possible augmentations include adding noise, distortions, or
additional background sounds to the audio track. Artificial meeting scenarios could
be created by mixing and matching excerpts from the available material. This could
include combining various speakers from different meetings and possibly creating
new meetings that have more participants than any meeting in the source material.

Our classifier works on audio streams that would allow real-time speaker recognition
on a live audio source, but we did not cover this aspect. Our hypothesis is that
real-time evaluation would work without extensive modification to the system. If
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evaluation performance turns out to be a problem, gated recurrent units (GRU)
may be able to replace our long short-term memory (LSTM) layers using much
less computation time as for example Khandelwal et al. found out in their speech
recognition experiments [34].

Alternative classification layers, like the gated recurrent units, could also outperform
our system in terms of accuracy. Other methods including bidirectional recurrent
neural networks (BRNN) and convolutional neural networks (CNN) [37] could also
be tested. In addition, attention-based recurrent neural networks have been a pop-
ular topic in recent years [10].

Convolutional neural networks might also replace our MFCC based feature extrac-
tion layer. Lukic et al. studied this arguing that the commonly used MFCC feature
extraction methods do not utilize all the available speaker information in the au-
dio [41]. They also researched speaker recognition as a clustering problem on the
latent space of their CNN, which makes it possible to segment speech from unknown
speakers.
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