
LAURI NISKANEN
MULTI-LABEL SPEAKER RECOGNITION USING
RECURRENT NEURAL NETWORKS

Master of Science thesis

Examiners: Professor Tuomas Virtanen and
Professor Hannu-Matti Järvinen

The examiners and topic of the thesis were
approved on 9 August 2017

i

Contents

1 Introduction 1

2 Speaker recognition 3

2.1 Frequency spectrum . 4

2.2 Mel-frequency cepstrum . 5

3 Machine learning 7

3.1 Supervised learning . 7

3.2 Artificial neural networks . 7

3.3 Backpropagation . 10

3.4 Multi-label classification . 11

3.5 Overfitting and regularization . 12

3.6 Recurrent neural networks . 14

4 Implemented method 16

5 Evaluation 19

5.1 Datasets . 19

5.2 Evaluation metrics . 20

5.3 Results . 20

6 Conclusion 31

6.1 Future work . 31

References 33

1

1 Introduction

For a long time computers have been better than any human in doing calculations
or simple repetitive tasks. However, tasks that require deeper understanding, cre-
ativity, or imagination have been very hard for computers to do. Only recently
computers have began to conquer many of these problems. For example, research
topics like computer vision, robotics, natural language processing, and automated
medical diagnosis have been greatly advanced with the help of modern machine
learning [11, 17, 31, 46].

These hard problems are typically so complex that it becomes impossible for a
programmer to manage all possible cases in a systematic way. The solution is to use
data-driven statistical methods to reduce the dimensionality of the task. Machine
learning is the study of algorithms that make predictions from collected data. In
contrast to classical computer algorithms, in machine learning the algorithm itself
is typically somewhat general, and data is in a very important role. The quality,
quantity, and representation of the data can have huge impact on the predictions.
The recent success of machine learning is a combination of theoretical advances,
more and more extensive data collection, and the availability of high performance
graphics processing units (GPU). [44]

One important problem area where computer systems have become better with
machine learning is processing human speech. Speech recognition is an especially
popular research topic in which the textual message of speech is analyzed. However,
human speech also contains information about the age, gender, emotion, and identity
of the speaker. In this thesis we focus on speaker recognition and study how the
identity of a speaker correlates with audible features. [45, 49]

Speaker recognition has a wide range of possible applications. One of them is an-
notating who speaks when in meeting recordings or other audio tracks. It could
also be used for improving speech controlled home automation systems with mul-
tiple users. Voice commands could select their default parameters and preferences
based on who gave the command. For example, a specific personal calendar could
be selected when a new event is being created. Speaker recognition has also been
used as a biometrical component for customer verification in financial services and
in criminal investigations [39, 47].

We implement a machine learning system that can identify speakers from given
audio samples based on how the voices of individual speakers sound different. The
system is applied to a dataset containing recordings of meetings. Each meeting has
typically four attendees having natural conversations. Our system analyzes the audio

2

recording at each time point and tries to determine who is speaking. People mostly
speak in turns, but it is not uncommon that two or more people are speaking over
each other. Meetings also have brief parts where nobody is speaking. To accomodate
these situations, our system does not simply name a single speaker per time point,
but instead outputs a list of active speakers. Since this list of speakers is given at
each point in time the output for the whole recording is two dimensional as shown
in figure 1.

Figure 1: A simplified example of the program output, where A, B, and C are different
speakers. The filled segments represent times where each speaker is active during the audio
track.

Our system is based on a recurrent neural network classifier. Recurrent neural
networks have the ability to remember past information to aid future predictions.
This way the system can learn that one speaker is often active for some time before
the speaker changes. During difficult points in the audio track the system can
support its decisions by the understanding of the previous moments. We compare
different neural network models and show how their hyperparameters affect the
predictions.

Chapter 2 has an introduction to speaker recognition. Chapter 3 explains how ma-
chine learning and neural networks can be used to achieve our goal. Chapter 4
presents our speaker recognition implementation and chapter 5 analyzes the perfor-
mance of our methods. Chapter 6 has concluding discussion and proposed topics
for future research.

ja milloin

Chapter

3

2 Speaker recognition

Speaker recognition aims to detect on which parts of an audio track someone is
speaking and to identify who the speakers are on each of those parts. There are
many ways to recognize speakers. One approach is to use multiple microphones
with known locations in relation to the speakers [56]. It is also possible to do speech
recogntion on the text of the speech and then recognize one or more specific phrases,
for example have the speakers say their name or a password. However, in this thesis
we are studing text-independent methods, where we only use acoustic characteristics
of speech irrespective of what is being said, and without using the location of the
microphones. [24]

This kind of recognition is possible, because people have individual voices. The
differences in the voices are mainly caused by anatomical differences in the vocal
tract. The shape of the vocal tract produces different resonances in the voice,
also called formants. Other affecting factors include the anatomy of the lungs and
the trachea. These differences in the voices can be analyzed using the frequency
spectrum of the audio. [7]

Traditionally speaker recognition has been split to two phases: speaker diarization
and speaker identification. The purpose of speaker diarization is to segment an audio
track into runs with only one speaker in each and also separate parts where nobody
is speaking [59]. The goal of speaker identification is to then detect the identity of
the speaker in each segment [49].

However, the traditional approach has some limitations. First, diarization systems
often need to process a whole file at a time and speaker identification is typically done
only after segmentation. This means that speaker recognition cannot be done live on
an audio stream. Second, people often interrupt each other or talk simultaneously
when trying to take the floor. This cannot be accurately represented with one-
speaker segments.

To resolve these issues, it is possible to do diarization and identification jointly in one
pass. Instead of telling who is speaking on each segment, we recognize the speaker
at each time frame. The idea of live recognition has been researched by Vinyals
and Friedland [61]. As we avoid needing the one-speaker segments we can take a
step further and do multi-label speaker recognition by giving a list of simultaneous
speakers for each time frame.

Speaker recognition systems contain two main components: feature extraction and
feature matching. The purpose of feature extraction is to represent the audio signal

aja spelling checker

epäselvää mitä tämä sana tässä tarkoittaa. ihan vaan “segment” olisi selkeämpi

Virtanen Tuomas

4

of the examined speech in a compressed form where unuseful information is filtered
out. There is a wide range of speech feature extraction methods such as linear
prediction coding (LPC) [42] and Mel-frequency cepstral coefficients (MFCC) [12].
The purpose of feature matching is to connect the extracted speech features to the
speaker identity or otherwise classify or cluster it. Feature matching techniques that
are used with speech include dynamic time warping (DTW) [54], hidden Markov
models (HMM) [2, 48], Gaussian mixture models (GMM) [52], vector quantization
(VQ) [13, 41], and artificial neural networks (ANN) [15, 34, 35, 43]. [1, 24, 45, 49]

This thesis presents and analyzes a live multi-label text-independent speaker recogni-
tion method with Mel-frequency cepstral coefficients (MFCC) as the speech feature
extraction method and recurrent neural network (RNN) as the feature matching
method. Next, we introduce the theory behind the vocal feature extraction meth-
ods that are needed for our implementation. The neural network components are
covered in chapter 3.

2.1 Frequency spectrum

Digital audio streams are typically represented with pulse-code modulation (PCM)
[4]. It is a time domain representation where the amplitude of the audio signal is
sampled with regular intervals. High quality audio signals are typically stored with
44.1 kHz or 48 kHz sampling rate.

However, in speaker analysis we are interested in high-level features of the audio
signal. Individual amplitude samples of the one-dimensional PCM audio signal do
not directly correlate with anything that would be useful for speaker recognition.
The solution is to transform the signal to a more useful format. Practically all vocal
feature extraction methods used in speaker recognition are based on distinguishing
the individual frequency modes, or formants, using the frequency spectrum of the
speech sample [14].

The spectrum can be calculated using discrete Fourier transform (DFT) [23], which
converts the audio samples from time domain to frequency domain. In time domain
we can see how the amplitude changes over time, but in frequency domain we can
analyze how the audio frequencies of the signal behave. Discrete Fourier transform
is defined by

X

k

=

N�1X

n=0

x

n

· e�i2⇡kn/N
,

mihin nämä viitteet liittyvät?

vältä viitteitä yksin seuraavalla rivillä.

mikä on muuttuja k?

5

where x0, x1, . . . , xN�1 represents uniformly spaced time domain samples and
X0, X1, . . . , XN�1 is a sequence of complex numbers containing information about
the amplitude and phase of the frequencies in the signal.

2.2 Mel-frequency cepstrum

discrete
Fourier transform

power spectrum

logarithm

Mel-weighting

discrete
cosine transform

audio slices

MFCC
feature vector

Figure 2: Pipeline for MFCC feature
vector calculation.

One step further to make the signal more
compact and better suited for speaker classi-
fication is to calculate the Mel-frequency cep-
strum [12]. The Mel-frequency cepstral coef-
ficients (MFCC) are widely used as a feature
vector in the field of automated speech analy-
sis [36, 50, 64, 65]. The Mel scale [58] is a scale
of audio pitches derived from listening exper-
iments with the purpose of mimicing how hu-
mans perceive audio signals [36]. A frequency
f given in hertz can be converted to mels us-
ing the formula [53]

f

m

= 1127 ln

✓
1 +

f

700 Hz

◆
mel

Cepstrum of signal x can be defined as

C = DCT{log |DFT [x]|2},

where DFT is the discrete Fourier transform
and DCT is the discrete cosine transform
[5]. In Mel-frequency cepstrum the frequency
bands are spaced based on the Mel scale [36].
Mel-frequency cepstrum is calculated by ap-
plying the Mel-weighting function w

m

before
the discrete cosine transform [64]:

C

m

= DCT{w
m

(log |DFT [x]|2)}.

The computation flow for the Mel cepstrum is illustrated in figure 2. The discrete
Fourier transform is used to calculate the power spectrum of the audio signal. Phase

notaatio olisi selkeämpi jos käyttäisit johdonmukaisesti vektoreille samaa notaatiota. eli kun sisäänmeno on \bar{\mathbb{x}}, niin olisi johdonmukaista käyttää samaa formaattia ulostulolle.

samoin muissa kaavoissa

6

information can be discarded because it has been shown to be not as important. The
logarithm of the spectrum is taken, because it approximately matches the perceived
loudness of the signal. Finally, after scaling the signal to the Mel scale, discrete
cosine transform is taken to reduce the number of parameters. This is useful be-
cause the calculated Mel-spectral vectors consists of highly correlated components.
Karhunen–Loève transform [29] would be more precise, but with speech signals dis-
crete cosine transform is commonly used to approximate it. [36]

7

3 Machine learning

Machine learning can be applied to a wide range of problems, and there are multiple
ways to use the collected data to solve the machine learning problems. In this thesis,
we are mainly interested in classification, where the goal is to assign a category for
each given item. Next, we will explain how classification can be implemented with
supervised learning using artificial neural networks.

3.1 Supervised learning

In classification, the goal is to train a prediction model, a classifier, that tells to which
category a sample belongs based on its features. The classifier can be trained using
example data. Each example has a vector of features and a target label. Features
are the input attributes that describe the sample. Labels are the categories to which
each sample belongs. [44]

The data must be split to three sets: training samples, validation samples, and test
samples. Training samples are used for training the classifier model. Validation
samples are used to compare different methods and to adjust the model parameters.
Test samples are used to test the performance of the trained classifier. It is important
that test samples are not available for the algorithm during the learning stage. The
model can be tested by predicting where the test samples should belong based on
its features and comparing the result to the sample label that represents the truth.
[3]

In supervised learning the algorithm is given access to both the training features
and training labels. In contrast, in unsupervised learning the algorithm can only
see unlabeled features. There are also other scenarios that differ in how the data is
available to the algorithm. [44]

There are many algorithms and models that can be trained to make classification
predictions [3]. Next, we will present one of them: artificial neural networks.

3.2 Artificial neural networks

Neural networks were first researched as a way to represent biological information
processing with mathematics by McCulloch in 1943 [43]. The term has since been
associated with numerous different models, most of which are only remotely related
to biology if at all. Neural networks consists of a fixed number of interconnected

8

Σ φ yx3 w3

x2 w2

x1 w1

xm wm

b

adder

activation
function

weights

output

bias
term

in
pu

ts

Figure 3: The components of an artificial neuron.

parametric units, or artificial neurons, whose parameters can be adjusted in training
phase so that they and the network as a whole produce the desired output. [3]

There are multiple models for artificial neurons, but in the common basic case a
neuron can be defined by the parts shown in figure 3. Each neuron has a set of
connecting links to predecessor neurons with weights associated to each link. The
adder component takes the output values from the connected predecessor neurons,
multiplies them by the link weights, and calculates the sum of these values. A bias
term can also be added to the sum. Activation function is a function that takes
the calculated sum as an input and produces an output value for the neuron. Some
commonly used activation functions are listed in table 1. [25]

rectified linear unit

8
<

:
0 for x < 0

x for x � 0

logistic sigmoid
1

1 + e

�x

hyperbolic tangent tanh(x) =

e

x � e

�x

e

x

+ e

�x

softplus ln(1 + e

x

)

Table 1: Common activation functions. [20]

Virtanen Tuomas

9

This basic neuron model can be described mathematically as the following equation:

y = '

b+

mX

j=1

w

j

x

j

!
,

where y is the output value of the neuron, ' is the activation function, b is the
bias term, w1, w2, . . . , wm

are the link weights, and x1, x2, . . . , xm

are the connected
predecessor neuron values. [25]

A feedforward neural network is composed of individual neurons arranged in layers as
shown in figure 4. The links between the neurons are defined so that the predecessor
of a neuron is in the preceding layer. Some of the neurons are selected to be in the
output layer of the network. Their value is visible as the output vector of the whole
network. Similarly, some of the neurons are used as the input to the network. The
input neurons do not have any predecessors neurons, but instead their value is given
from outside of the network. Neurons that are neither input nor output units are
called hidden units as they are not directly exposed to the outside. [3]

input
layer

hidden layers
output
layer

Figure 4: A simplified feedforward network composed of neurons arranged in layers.

Typically the network structure is expressed by defining the number of hidden layers
in the network and the number of units in each layer, also called the size of the layer
[3]. Different layers may have a different sizes. The input and output layer sizes are
usually defined by the intended use of the network. The number and sizes of hidden
layers can be adjusted based on the desired network complexity. Different layers may
also use different activation functions or extended neuron models, some of which we
will examine later. These parameters related to the structure of the network are
called the hyperparameters of the network. They are typically not changed during
the training process. However, next we see how other parameters, especially the

10

neuron link weights, are not fixed in place but instead being adjusted dynamically
during neural network training.

3.3 Backpropagation

Training a neural network is a process where the neuron link weights, and some-
times other parameters, are adjusted so that the network can produce the desired
output values for given input values [25]. In other words, the internal parameters of
a neural network are modified so that the network can approximate a given func-
tion. Backpropagation [62] is a popular and effective algorithm for training neural
networks.

In supervised learning, the neural network is trained with a set of labelled training
examples. These examples, or training samples, are pairs of input and output values.
When the network is trained to do classification the input values are called features,
which describe a given sample in some way. The output vector of the network is
used for encoding the class of the sample. For example, in a binary classification
case there are positive and negative samples, and the class of the sample can be
encoded simply by using one neuron in the output layer and by differentiating the
class by the value of the neuron (e.g. 0 or 1). [25]

Before starting the training process it not known what values the neuron link weights
should have. They can be initialized randomly. The backpropagation algorithm
works by iterating training samples making a forward pass and a backward pass for
each of them. In the forward pass the values of the input units are set according
to features of the sample. Then, the neuron functions are evaluated propagating
the signal towards the output layer. This process produces values for the output
neurons of the network. The output values are compared to the expected output
vector, which in supervised learning is known for each sample. In the backward pass
the neuron link weights are adjusted so that the difference between the expected
output vector and the produced output vector decreases. The goal of the training
process is to iteratively tweak the parameters in the network so that the response
produced in the forward pass matches the desired one more and more closely. [25]

There are multiple ways to determine how the parameters should be adjusted. Math-
ematically speaking, we need to define a loss function that the training process is
trying to minimize. For binary classification the loss function can be the logistic
sigmoid function on an output neuron [3]. We will later examine the choice of the
loss function and the encoding scheme for output neurons for various classification
problems. The gradient of the loss function is useful in calculating the needed change

11

to the parameters. To decrease the loss, a small step can be taken in the direction
of the negative gradient [3]:

a

n+1 = a

n

� ⌘rE(a

n

),

where a

n

is the value of the examined parameter before the adjustment and a

n+1

after it, rE is the gradient of the loss function, and ⌘ is a parameter called the
learning rate. Learning rate determines how great the adjustment steps are. When
iterating the training samples randomly and evaluating the loss function for one
sample at a time, this way of adjusting the network is known as stochastic gradient
descent [51].

3.4 Multi-label classification

Basic single-label binary classification answers to the yes–no question "Does the
sample match the criteria?" In practice the question can be for example "Is the
object in the given image a cat?" In these cases the neural network output is typically
encoded as a single neuron whose value is either one or zero. Values in between may
represent varying levels of uncertainty. This encoding scheme can be extended to
support multiple mutually exclusive classes, answering for example to the question
"Is the animal in the image a cat, a dog, or a horse?" With n classes the output
is often encoded with n neurons so that one neuron has the value one and the rest
have value zero. Uncertainty can be encoded by assigning weighted values to the
neurons so that the sum of the values of all output neurons is one. This is called
multiclass or multinomial classification with one-hot encoding. [60]

Another way to extend the scheme is to allow multiple labels that are not mutually
exclusive. The classification question could be "Which of the listed animals, if
any, are present in the image?" Multi-label classification answers to n independent
questions at the same time. Often these are binary questions and the output can be
encoded with n neurons whose values are all independently between one and zero.
It is also possible to further extend the output encoding to allow more complicated
structures. [60]

We have argued that the structure of the output layer depends on the type of clas-
sification. In addition, the activation function of the output layer neurons and the
classifier loss function must be chosen accordingly. In single-label binary classifi-
cation the activation function is typically logistic sigmoid and the loss function is
logistic loss. There are also many alternative activation and loss functions for this

Virtanen Tuomas
ovatko ne tosiaan riippumattomia? yleisessä tapauksessa eivät�

12

case. In multiclass classification the natural choice is to use softmax activation and
categorical cross entropy loss, which is an extension of logistic loss. Softmax is a
function that squashes a vector of values in between zero and one so that their sum
is one. It is mathematically defined as

'

i

(x) =

e

xi

P
n

k=1 e
xk

for i = 1, . . . , n,

where x1, x2, . . . , xn

are the input values [3]. In binary multi-label classification
logistic sigmoid can be used as the activation function for all the output neurons
separately. The multi-label extension of logistic loss is called binary cross entropy
loss. These activation and loss functions for different classification problems are
listed in table 2. [21]

classification type output activation loss function
binary single-label logistic sigmoid logistic loss

multiclass softmax categorical cross entropy
binary multi-label logistic sigmoid binary cross entropy

Table 2: Common output layer activation functions and loss functions for different clas-
sification problems.

Choosing the activation and loss functions correctly is important. For example, if
softmax and categorical cross entropy loss were used in a multi-label classification
problem where the labels are actually independent, naïvely interpreting the out-
put values would produce somewhat correlated but as a matter of fact meaningless
results. The other way around, if mutually exclusive multiclass classifier used in-
dependent logistic sigmoid activations instead of softmax, the produced probability
distribution would be invalid because the total probability would not be exactly one.

3.5 Overfitting and regularization

A supervised model should be able to repeat predictions that it was given in the
training phase. If the model is too simple it might fail to do this because it is
not be able to capture all the details of the training samples. This phenomenon is
called underfitting. However, it is also very important that the model can generalize
and make good predictions about new samples. It is not enough to remember all
the details of the training samples since the number of training samples is in often
limited and the samples may contain noise. By noise we mean random details in
the features that do not represent the underlying properties of the data. When the
model learns too much of this noise instead of the intended structure it is said to be
overfitting. An example of this behavior is shown in figure 5. [6]

13

Figure 5: The solid line is a precise fit to the data points, but the dashed line may
generalize better when making predictions.

It is beneficial to use a model structure that is so simple that it cannot learn all the
noise in the data so it must instead approximate the samples it was given in order
to minimize the loss function. This approximate often generalizes better producing
good predictions for unknown samples. In neural network models a natural way
to adjust the complexity and learning capacity is to choose the number of neurons
accordingly. One way to prevent overfitting is to train multiple models and average
the predictions. However, there are regularization techniques that are designed to
prevent overfitting with less computation. [32]

Overfitting can be visualized using learning curves. These curves show validation
loss as a function of training time. The validation loss of an ideal model would
monotonically converge to a global minimum. If the model overfits the validation
loss starts to increase after a point. Early stopping is a popular regularization
method that leverages this behavior by stopping the training when the loss starts
to go up. Figure 6 has learning curves for two example models. The dashed line
converges and the solid line represents a model that overfits. [55]

training time

va
lid

at
io

n
lo

ss

Figure 6: Learning curves for two models showing loss convergence and overfitting.

14

Dropout [57] is a commonly used regularization method for neural networks [18].
Dropout works by randomly dropping neurons from the network during training as
illustrated in figure 7. This prevents the neurons from relying too much on each
other and forces the network to create redundant paths. After the training phase
all neurons are enabled. The output of single neurons and ultimately the output of
the whole network is averaged over multiple paths making the results more robust
against noise. [57]

Figure 7: With dropout random neurons are disabled in the training phase.

3.6 Recurrent neural networks

Recurrent neural networks (RNN) [28] were first introduced by Hopfield in 1982.
They gained popularity after Hochreiter and Schmidhuber discovered long short-
term memory (LSTM) [26] networks in 1997. Long short-term memory networks
outperform many other models in multiple fields including natural language text
processing and speech recognition [16, 40]. Gated recurrent units (GRU) [9] have
also been proved to have similar performance with LSTM networks.

Recurrent neural networks are applied to sequences like a stream of text, audio, or
time series data points. In contrast, traditional neural networks must be applied to
fixed-length vectors and cannot handle variable-length sequences. Recurrent neural
networks are also able to output variable length sequences. Recurrent neural net-
works are based on recurrent neurons that extend the basic neuron model by adding
connections to earlier neurons along the sequence. This effectively enables recurrent
neurons to remember values over time. [22]

An LSTM neuron contains an input gate, a memory cell, a forget gate, and an
output gate as shown in figure 8. The dashed lines represent connections along the
sequence. The LSTM gates regulate how the information is stored and accessed from

15

the cell allowing the neuron to remember a value for a time it is useful but no longer
than necessary. This structure tries to avoid the vanishing gradient problems that
often limit the usefulness of recurrent neural network models [27]. An extension of
the backpropagation algorithm, called backpropagation through time (BPTT) [63],
can be used to efficiently train recurrent neural networks. [19]

xt

×it

ct

ct-1

yt

ft

yt-1

×

Σ

Σ
wc uc

tanh

Σ
wi ui

σ

tanh

Σ
wf uf

σ

×

ot

Σ
wo uo

σ

bcbi bf bo

input gate

m
em

ory cell

forget gate

output gate

Figure 8: The structure of a long short-term memory neuron.

The forward pass of an LSTM neuron is defined by equations [19]:

i

t

= �(w

i

x

t

+ u

i

y

t�1 + b

i

)

f

t

= �(w

f

x

t

+ u

f

y

t�1 + b

f

)

o

t

= �(w

o

x

t

+ u

o

y

t�1 + b

o

)

c

t

= i

t

tanh(w

c

x

t

+ u

c

y

t�1 + b

c

) + f

t

c

t�1

y

t

= o

t

tanh(c

t

),

where x

t

is the input vector, f
t

, i
t

, and o

t

are the activation vectors of the forget
gate, the input gate, and the output gate, respectively, c

t

is the cell state vector, y
t

is the output vector of the neuron, � is the logistic sigmoid function, and w, u, and
b are the weight matrices and the bias vectors.

16

4 Implemented method

We implemented a multi-label speaker recognition model that can identify known
speakers in a given audio track. For each trained speaker the model outputs a prob-
ability of speaking at each time frame in the audio track. The output is visualized
in figure 9. In this model it is possible that multiple speakers are speaking at the
same time. The model is trained with an audio track and a synchronized binary
label track for each speaker. The label track used in training has the same structure
as the program output, but with only binary values at each time point as shown in
figure 1 in the introduction chapter.

Figure 9: Program output with predicted probabilities shown as grayscale values.

The pipeline for making speaker activity predictions is shown in figure 11 (see the
next page). The input audio track is given in PCM format. It is sliced to time frames
of 20 milliseconds and 18 MFCC audio feature values are calculated for each frame.
These MFCC features frames are given to the classifier model and it will output
a probability vector for each frame. The probabilities represent the likelyhood of
each speaker being active during the frame. With an ideal classifier the output
probabilities would mimic the binary ground truth labels where each speaker is
either speaking or not on each time frame. However, in practice the output contains
time frames with uncertain predictions which may be incorrect.

In training phase (figure 10) the pipeline has the same preprocessing and feature
extraction stages, but instead of making predictions in the classification stage the
model is given both the MFCC features vectors and the ground truth labels. The

trained
model

speaker
labels

MFCC
features

audio
slices

audio
track

Figure 10: Training the classifier model.

17

speaker probabilities

classification

feature extraction20 ms

18 MFCC
values

slicing20 ms

PCM

PCM

audio track
time

time
Figure 11: Pipeline for making speaker activity predictions on a given audio track.

18

model will try to fit its internal parameters so that it will be able to make useful
predictions.

The classifier model, as shown in figure 12, is a neural network with LSTM layers
and a densely connected output layer. The MFCC feature frames are given as the
input sequence for the first LSTM layer. The number and dimensionality of the
LSTM layers can be adjusted. The LSTM layers also have an adjustable dropout
parameter.

time

dense

LSTM

LSTM

dense

LSTM

dense

LSTM

18 MFCC
values

speaker
probabilities

dense

LSTM

LSTM

dense

LSTM =
LSTM LSTM LSTM

Figure 12: The structure of the classifier model with two LSTM layers.

Our model can use a look-ahead buffer to delay the network evaluation and feed
the input signal to the model so that it can use some future samples to make the
prediction. The length of the look-ahead buffer can be adjusted. It does not need to
be very long and so it would only add a short delay when doing real-time prediction.

We have implemented the model in Python using Keras [10], an open-
source neural network library. MFCC audio features are generated with
python_speech_features library [38].

Virtanen Tuomas
tämä kohta ei ole täysin selvä. mitä tarkoittaa että evaluointia viivästetään?�

Virtanen Tuomas
mikä oli käytetty sekvenssin pituus treenauksessa? tyypillisestihän koko signaalia ei anneta kerralla vaan lyhempinä pätkinä.�

19

5 Evaluation

In this chapter we present the datasets and evaluation metrics we used and then
analyze the performance of our model with different hyperparameter combinations.

5.1 Datasets

Our main dataset for model development is AMI Meeting Corpus [8]. It is a publicly
available, Creative Commons licensed set of recorded meetings with multiple audio
tracks along with various additional signals and annotations. The meetings were
recorded in English by native and non-native speakers in acoustically different rooms
using various kinds of microphones. Our interest is mainly on the high quality
synchronized transcript that we can use to train and test speaker recognition models.

AMI Meeting Corpus consists of recording sessions. The sessions have unique identi-
fiers, for example ES2016. Each session has a fixed set of participants and meetings
they recorded. Typically a session has four speakers in four meetings. In the dataset
each speaker have been assigned a unique identifier, for example MEE016 or FIE073.
The first letter in the identifier corresponds to the gender of the speaker (M=male,
F=female). These identifiers are shown in some of the result visualizations later.
Each session has a new group of participants, but some participants have joined
multiple sessions. Most of the meetings are simulated for the dataset, but with the
aim to have natural, uncontrolled conversations. [8]

Each meeting in the dataset is recorded with multiple sets of different microphones.
The dataset includes individual audio tracks for each speaker that could be used for
speaker diarization based on the track volumes alone. However, they are not used
in this thesis, because we are interested in a classifier that can distinguish different
speakers from a single audio track. To avoid fitting to microphone locations, which
may affect the volume and other details of the voice in the audio track, we use a
different set of microphones in the training phase. Training uses sound mixed from
lapel microphones and evaluation uses mixed headset microphone tracks.

We train our speaker recognition model for each group of speakers separately. Out
of the four meetings in a session, three are used for training and the remaining one
for validation. Our goal is to find a generalized model and hyperparameter values
that perform well with all groups of speakers. We have reserved some sessions for
model selection and hyperparameter adjusting and the remaining ones are used for
testing.

Virtanen Tuomas
jos treenauksessa on vain lapel-mikrofonit, niin silloinhan malli oppii niiden ominaisuudet. vai onko treenauksessa jotain mikä aikaansaa sen että malli yleistyy muihin mikfofoneihin?�

Virtanen Tuomas
mitkä täsmälleen ottaen?�

20

The transcript annotations in the dataset are in XML based formats that must be
processed and combined in order to have useful speaker labeling for our case.

5.2 Evaluation metrics

[TODO]

5.3 Results

Our classifier model is not remarkably deep or otherwise complex. Yet there are still
many tweakable hyperparameters that have significant impact on the classification
result. The main hyperparameters are the number of stacked LSTM layers and
the size of those layers. As discussed in chapter 3, larger networks are prone to
overfitting. To combat this, our third major hyperparameter is dropout. In this
part of the thesis we are evaluating the different values for these hyperparameters
to see which combinations works best. The hyperparameters to be tested and the
values we are going to choose from are listed in table 3.

hyperparameter examined values
number of LSTM layers 1, 2

size of LSTM layers 16, 64, 256, 1024
dropout 0 % (disabled), 50 %

Table 3: Examined hyperparameters and their values.

The number of training steps can also be seen as a hyperparameter for the model. It
is expected that good classification results require a certain amount of training steps.
In an ideal case the classification accuracy would improve over time and converge to
some level. However, mainly due to overfitting, the accuracy may start to decrease
at some point with more training. We are trying to analyze these behaviors with
learning curves where classification accuracy is plotted as a function of training
epochs.

First we examine a model with one LSTM layer and no dropout. The layer size is
varied to see how it affects the results. In figure 13 there are two loss curves for each
tested LSTM layer size. The dashed lines represent training losses and the solid
lines validation losses. Initially the losses decrease rapidly, but after around epoch 5
the validation loss for all models except the one with layer size 16 start to increase
while training losses continue to decrease. This most likely indicates overfitting.
In figure 14 there is ROC AUC score curve for each tested layer size. We can see

Virtanen Tuomas
tämän kappaleen alussa on juttu hyperparametrien valinnasta. nämä voisi siirtää omaan kappaleeseensa.�

21

5 10 15 20 25 30 35 40

0

0.2

0.4

0.6

0.8

1

epoch

bi
na

ry
cr

os
s

en
tr

op
y

lo
ss

16
64
256
1024

Figure 13: The effect of layer size on training loss (dashed lines) and validation loss (solid
lines).

5 10 15 20 25 30 35 40

0.75

0.8

0.85

0.9

0.95

1

epoch

R
O

C
A

U
C

sc
or

e

16
64
256
1024

Figure 14: The effect of layer size on ROC AUC score.

that scores increase on the very first epochs. On layer size 16 the score continues to
increase slowly, but the score of the models with greater layer sizes start to decrease.

Next, we test how adding dropout changes the results. Dropout may reduce over-
fitting allowing us to use larger network sizes. Figure 15 has learning curves with
training and validation losses for models with layer size 256 and dropout both en-
abled and disabled. Shaded regions are one standard deviation error bands for the
variance between meetings. Enabling dropout increased training loss. As discussed
earlier in chapter 3, this is only an artifact caused by dropout itself. Dropout makes
fitting to training data more difficult by design. Validation loss and other metrics
should be used when comparing the trained models. The model with dropout has
lower validation loss on all epochs compared to the model without dropout. The
curve with dropout is converging and has less variance. In contrast, the validation

22

5 10 15 20 25 30 35 40

0

0.2

0.4

0.6

0.8

1

epoch

bi
na

ry
cr

os
s

en
tr

op
y

lo
ss

no dropout
dropout 0.5

Figure 15: The effect of dropout on training and validation losses (LSTM, layer size 256).

5 10 15 20 25 30 35 40

0.75

0.8

0.85

0.9

0.95

1

epoch

R
O

C
A

U
C

sc
or

e

no dropout
dropout 0.5

Figure 16: The effect of dropout on ROC AUC score (LSTM, layer size 256).

loss for the model without dropout has significantly more variance and starts to in-
crease after around 5 epochs of training showing overfitting. At this layer size these
observations would support selecting the model with dropout over the one without.
We can futher see the difference in figure 16 where ROC AUC score is compared.

To find the best hyperparameter combination, we now test more layer sizes with
dropout enabled. Figure 17 shows how varying the layer size affects training and
validation losses when dropout is enabled. Comparing to figure 13 it can be noticed
that with dropout the loss curves do not start to increase anymore. ROC AUC
scores with dropout enabled in figure 18 are converging and reaching better values
than without dropout in figure 14 where most of the scores started to decrease. It
can be seen that dropout is useful for reducing overfitting and making the models
more stable.

From the tested layer sizes it would appear that 256 and 1024 are the best models

23

5 10 15 20 25 30 35 40

0

0.2

0.4

0.6

0.8

1

epoch

bi
na

ry
cr

os
s

en
tr

op
y

lo
ss

16
64
256
1024

Figure 17: The effect of layer size on training and validation loss with dropout enabled.

5 10 15 20 25 30 35 40

0.75

0.8

0.85

0.9

0.95

1

epoch

R
O

C
A

U
C

sc
or

e

16
64
256
1024

Figure 18: The effect of layer size on ROC AUC score with dropout enabled.

5 10 15 20 25 30 35 40

0

0.2

0.4

0.6

0.8

1

epoch

bi
na

ry
cr

os
s

en
tr

op
y

lo
ss

16, no dropout
16 with dropout
256 with dropout

Figure 19: Training and validation losses comparison of some models with dropout en-
abled and disabled.

24

5 10 15 20 25 30 35 40

0.75

0.8

0.85

0.9

0.95

1

epoch

R
O

C
A

U
C

sc
or

e

16, no dropout
16 with dropout
256 with dropout

Figure 20: ROC AUC score comparison of some models with dropout enabled and dis-
abled.

on both validation loss and ROC AUC score. Layer size 1024 may have marginally
better results, but the difference is very small. Layer size 64 is not far behind, but
size 16 does not seem to be large enough to fully capture the underlying phenomena.
However, even with the layer size 16 the loss and score values are better with dropout
than without. This can be seen in figures 19 and 20 where the model without dropout
(layer size 16) is compared to models with dropout enabled. At layer size 16 the
model learns faster without dropout but the model with dropout enabled will reach
and exceed the performance with further training.

The predictions made by our classification system are shown in figures 21 and 22.
The figures also have the ground truth labels for comparison. The x-axis is time in

Figure 21: Predictions compared to ground truth labels after only one epoch of training
(layer size 256, dropout).

25

Figure 22: Predictions after 37 epochs of training (layer size 256, dropout).

the audio track starting from the beginning of meeting. The meetings are longer,
but for visualization reasons these figures are limited to the first ten minutes. The
predictions in figure 21 are made after only one epoch of training. At that stage
the classifier is still underfitted and the predictions are mostly uncertain and in-
clude lots of random noise. Figure 22 has the same classifier and configuration,
but after 37 epoch of training at the peak accuracy. The prediction signal is now
significantly stronger. There are still some incorrect predictions, but most of the
speaking segments are correctly identified. For comparison, figure 23 has the predic-
tions for the same meeting made by a classifier model with layer size 16 and dropout
disabled. This figure looks similar, but especially the predictions for MEO062 and
FEE064 have more mistakes and this classifier is incorrectly more confident about
them compared to the mistakes in figure 22.

Figure 23: Predictions made by a model with layer size 16 and no dropout.

26

5 10 15 20 25 30 35 40

0

0.2

0.4

0.6

0.8

1

epoch

bi
na

ry
cr

os
s

en
tr

op
y

lo
ss

1-layer
2-layer

Figure 24: Loss comparison of 1-layer and 2-layer models with layer size 256 and dropout.

5 10 15 20 25 30 35 40

0.75

0.8

0.85

0.9

0.95

1

epoch

R
O

C
A

U
C

sc
or

e

1-layer
2-layer

Figure 25: ROC AUC comparison of 1-layer and 2-layer models with layer size 256 and
dropout.

Stacking another LSTM layer to the network model is a way to increase the learning
capacity. Figures 24 and 25 compare 1-layer and 2-layer models with layer size
256 and dropout enabled. The 2-layer model performs almost exactly as well as
the 1-layer model with same parameters. The simpler 1-layer model learn a bit
faster, but with more training the 2-layer model reaches the same results. The 2-
layer model may be marginally better, but the difference between the results is not
clear. It seems that the 1-layer model at this layer size is already complex enough
to accurately fit the problem.

To see if adding a second hidden layer increases learning capacity we compare 1-
layer and 2-layer models with layer size 16 and dropout disabled. The loss and
ROC AUC score learning curves are shown in figures 26 and 27. It can be seen that
the 2-layer model performs better with these parameters. Again, the 1-layer model

27

5 10 15 20 25 30 35 40

0

0.2

0.4

0.6

0.8

1

epoch

bi
na

ry
cr

os
s

en
tr

op
y

lo
ss

1-layer
2-layer

Figure 26: Loss comparison of 1-layer and 2-layer models with layer size 16.

5 10 15 20 25 30 35 40

0.75

0.8

0.85

0.9

0.95

1

epoch

R
O

C
A

U
C

sc
or

e

1-layer
2-layer

Figure 27: ROC AUC comparison of 1-layer and 2-layer models with layer size 16.

5 10 15 20 25 30 35 40

0

0.2

0.4

0.6

0.8

1

epoch

bi
na

ry
cr

os
s

en
tr

op
y

lo
ss

16
64
256
1024

Figure 28: The effect of layer size on training and validation loss with 2-layer models and
dropout enabled.

28

5 10 15 20 25 30 35 40

0.75

0.8

0.85

0.9

0.95

1

epoch

R
O

C
A

U
C

sc
or

e

16
64
256
1024

Figure 29: The effect of layer size on ROC AUC score with 2-layer models and dropout
enabled.

learns initially faster, but the 2-layer model achieves better results later. The 2-layer
model also has less variance in its results.

To further compare the parameter combinations, we test 2-layer models with each
layer size. The learning curves for each 2-layer model with different layer sizes are
shown in figure 28 and 29. These curves look very similar to the 1-layer model
curves in figures 17 and 18. Layer sizes 256 and 1024 still the best ones. Seems that
the 2-layer models take more training time to reach the same results and there is
no visible benefit in having 2 LSTM layers.

Different models have different computational costs. Table 4 shows how training
speed differs for our models. The training speed depends on the underlying hardware
setup. In our case the measurements were done on a system with Intel Core i5-4670K
processor and GeForce GTX 1060 (6GB) graphics processing unit. We can see that
models with layer size 1024 or any 2-layer model takes significantly more time for
training than the simpler models. The 2-layer model with layer size 1024 takes about
ten times the training time compared to the smaller 1-layer models. This gives us
reason to select the 1-layer model with layer size 256 since the more complex models
did not achieve better accuracy results.

training time per epoch (s)
1 layer 2 layers

layer size 16 35.1± 0.78 73.8± 3.50

layer size 64 36.7± 1.94 72.1± 2.68

layer size 256 35.0± 1.01 74.0± 1.84

layer size 1024 121.9± 5.22 340.1± 13.89

Table 4: Training time for different models (dropout enabled).

Virtanen Tuomas
miten treeniajan mittaus tehty?

29

Up to this point we have used a validation dataset that combine multiple recording
sessions. Using more data is good for achieving generalization as it is not desired to
optimize the system for any single case. The meetings in the recording sessions may
have differences that affect the classification performance. If we examine predictions
made for some specific session the results may be deviated from the averages shown
before. The variance in the results in different sessions can be analyzed by calculat-
ing the metrics for each of them separately. This is done in figure 30 where ROC
AUC scores are shown separately for five sessions. The results on some sessions
are significantly better compared to others. We can say that, for our classification
models, the speaking patterns in IS1008 seem to be easier to classify than in IS1000.
The differences can also been seen by comparing the labels and predictions for meet-
ings ES2016a (figure 22), IS1008a (figure 31), and IS1000a (figure 32). No further

5 10 15 20 25 30 35 40

0.75

0.8

0.85

0.9

0.95

1

epoch

R
O

C
A

U
C

sc
or

e

ES2008
ES2012
ES2016
IS1000
IS1008

Figure 30: ROC AUC score for individual validation datasets (LSTM, layer size 256,
dropout).

Figure 31: Predictions for meeting IS1008a (layer size 256, dropout).

30

Figure 32: Predictions for meeting IS1000a (layer size 256, dropout).

analysis on the actual differences in the data is done in this thesis.

So far we have used our validation data sets for model selection. While the validation
data was not available to the network optimizer itself, it is possible that by choosing
the best model structure and hyperparameters we have overfitted to the validation
data. We can compare the results to a new, unused test set. The best model chosen
for testing is a 1-layer LSTM network with layer size 256 and dropout enabled.
Table 5 has evaluation results for both the validation set and test set.

cross entropy loss ROC AUC score F1 score
validation set 0.504± 0.1867 0.942± 0.0444 0.763± 0.1486

test set
Table 5: Comparison of validation and test results (layer size 256, dropout, epoch 40).

We can also compare how the predictions made for the testing set look. Figure ??
shows predictions made for meeting XYZ1234 in our testing set. The meeting is
different so we cannot directly compare it to the meetings showed earlier in fig-
ures 22, 31, and 32, but it can be seen that the predictions are around the same
level of quality as the earlier ones made with the same set of hyperparameters.

31

6 Conclusion

This thesis introduced the reader to the theory that is needed to understand our
experimental speaker recognition system. We were able to develop a recurrent neural
network classifier that succesfully performs multi-label speaker recognition on AMI
Meeting Corpus data set. Based on this fact, we can conclude that recurrent neural
networks can be used to perform speaker recognition. We can also see that a rather
simple long short-term memory (LSTM) network using MFCC features is sufficient
for this task. We compared different hyperparameters and noticed that by choosing
good values for them can improve the classification results and reduce computational
requirements. The best model was a 1-layer LSTM network with layer size 256. More
complex models significantly increase the computation cost, but do not improve the
results.

One source of uncertainty in the measured results is the inaccuracies in the speaker
label annotations. AMI Meeting Corpus was chosen because the annotations seem
to be very good, but we cannot expect them to be absolutely correct. We have also
limited the speaker label time resolution to 20 milliseconds.

The main limitation of our implementation is that it only recognizes known speakers
that were present in the training material. This is caused by our supervised clas-
sification architecture. Unknown speakers could be supported with unsupervised
learning that only clusters similar utterances together without actually identifying
the speakers. However, the supervised approach may be better if the goal is to
only recognize few designated speakers for whom we have speech samples. Further
research could be done on determining the required amount of training samples per
speaker and on minimizing that amount.

6.1 Future work

We used only the AMI Meeting Corpus dataset in our experiments. Further test-
ing could be done with other datasets that do not need to be limited to meeting
recordings. In addition, existing data could be augmented to increase the amount of
training samples. Possible augmentation include adding noise, distortions, or addi-
tional background sounds to the audio track. Artificial meeting scenarios could be
created by mixing and matching excerpts from the available material. This would
include combining various speakers from different meetings and possible creating
new meetings that have more participants than any meeting in the source material.

Our classifier works on audio streams that would allow real-time speaker recognition

Virtanen Tuomas
laita selkeämmin spesifi tehtävä jota sinä ratkoit.�

32

on a live audio source, but we did not cover this aspect. Our hypothesis is that
real-time evaluation would work without extensive modification to the system. If
evaluation performance turns out to be a problem, gated recurrent units (GRU)
may be able to replace our long short-term memory (LSTM) layers using much
less computation time as for example Khandelwal et al. found out in their speech
recognition experiments [30].

Alternative classification layers, like the gated recurrent units, could also outperform
our system in terms of accuracy. Other methods including bidirectional recurrent
neural networks and convolutional neural networks (CNN) [33] could also be tested.
Convolutional neural networks might also replace our MFCC based feature extrac-
tion layer. Lukic et al. studied this arguing that the commonly used MFCC feature
extraction methods do not utilize all the available speaker information in the audio
[37]. They also researched speaker recognition as a clustering problem on the la-
tent space of their CNN, which makes it possible to segment speech from unknown
speakers.

33

References

[1] X. Anguera, S. Bozonnet, N. Evans, C. Fredouille, G. Friedland and O. Vinyals.
Speaker diarization: A review of recent research. 2012. IEEE Transactions on
Audio, Speech, and Language Processing 20, no. 2, pp. 356–370.

[2] L.E. Baum and T. Petrie. Statistical inference for probabilistic functions of
finite state Markov chains. 1966. The annals of mathematical statistics 37, no.
6. pp. 1554–1563.

[3] C.M. Bishop. Pattern recognition and machine learning. 2006. Springer Science.

[4] H.S. Black, and J.O. Edson. Pulse code modulation. 1947. Transactions of the
American Institute of Electrical Engineers 66, no. 1. pp. 895–899.

[5] L.E. Boucheron and P.L. De Leon. On the inversion of mel-frequency cepstral
coefficients for speech enhancement applications. 2008. IEEE Signals and Elec-
tronic Systems. ICSES’08. pp. 485–488.

[6] K. Burnham and D.R. Anderson. Model selection and multimodel inference:
a practical information-theoretic approach. 2003. Springer Science & Business
Media.

[7] J.P. Campbell. Speaker recognition: A tutorial. 1997. Proceedings of the IEEE
85, no. 9. pp. 1437–1462.

[8] J. Carletta. Announcing the AMI Meeting Corpus. 2006. The ELRA Newslet-
ter 11(1), January-March, pp. 3–5.

[9] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares, H.
Schwenk, Y. Bengio. Learning phrase representations using RNN encoder-
decoder for statistical machine translation. 2014. arXiv:1406.1078.

[10] F. Chollet. Keras. 2015. https://keras.io/

[11] R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, and P. Kuksa.
Natural language processing (almost) from scratch. 2011. Journal of Machine
Learning Research 12, Aug. pp. 2493–2537.

[12] S. B. Davis, P. Mermelstein. Comparison of parametric representations for
monosyllabic word recognition in continuously spoken sentences. 1980. IEEE
Transactions on Acoustics, Speech and Signal Processing, vol. 28, no. 4, pp. 357–
366.

https://keras.io/
Virtanen Tuomas
vol 20?

vuosi puuttuu�

Virtanen Tuomas
isot alkukirjaimet

Virtanen Tuomas
vol 37?

Virtanen Tuomas
isot alkukirjaimet

Virtanen Tuomas
vol 66?

Virtanen Tuomas
tyypillisesti vuosiluku viimeisenä�

Virtanen Tuomas
katso että viitteissä on kaikki tarvittavat tieto ja muotoilu on jonkun standardin mukainen. kommentoin muutamaa ensimäistä viitettä, katso itse loput kuntoon.�

34

[13] H. Dudley. Phonetic Pattern Recognition Vocoder for Narrow-Band Speech
Transmission. 1958. The Journal of the Acoustical Society of America 30, no.
8. pp. 733–739.

[14] G. Fant. Acoustic theory of speech production. 1960. Mouton.

[15] K.R. Farrell, R.J. Mammone, and K.T. Assaleh. Speaker recognition using neu-
ral networks and conventional classifiers. 1994. IEEE Transactions on speech
and audio processing 2, no. 1. pp. 194–205.

[16] S. Fernández, A. Graves, and J. Schmidhuber. An application of recurrent neu-
ral networks to discriminative keyword spotting. 2007. In International Confer-
ence on Artificial Neural Networks, pp. 220–229. Springer, Berlin, Heidelberg.

[17] K.R. Foster, R. Koprowski, and J.D. Skufca. Machine learning, medical diag-
nosis, and biomedical engineering research-commentary. 2014. Biomedical en-
gineering online 13, no. 1. p. 94.

[18] Y. Gal and Z. Ghahramani. A theoretically grounded application of dropout in
recurrent neural networks. 2016. In Advances in neural information processing
systems. pp. 1019-1027.

[19] F.A. Gers, J. Schmidhuber, and J. Cummins. Learning to forget: Continual
prediction with LSTM. 1999. Neural Computation, vol. 12, no. 10. pp. 2451–
2471.

[20] X. Glorot, A. Border, and Y. Bengio. Deep sparse rectifier neural networks.
2011. Proceedings of the fourteenth international conference on artificial intel-
ligence and statistics. pp. 315–323.

[21] I. Goodfellow, Y. Bengio, and A. Courville. Deep learning. 2016. Cambridge,
MIT press.

[22] A. Graves, A.R. Mohamed, and G. Hinton. Speech recognition with deep
recurrent neural networks. 2013. In Acoustics, speech and signal processing
(ICASSP). IEEE. pp. 6645–6649.

[23] F. J. Harris. On the use of windows for harmonic analysis with the discrete
Fourier transform. 1978. Proceedings of the IEEE 66.1, pp. 51–83.

[24] M. R. Hasan, M. Jamil, M. G. Rabbani, & M. S. Rahman. Speaker identifi-
cation using mel frequency cepstral coefficients. 2004. International Conference
on Electrical & Computer Engineering.

[25] S. Haykin. Neural networks: a comprehensive foundation. 1994. Prentice Hall
PTR.

35

[26] S. Hochreiter, J. Schmidhuber. Long short-term memory. Neural Computation,
Vol. 9, No. 12, 1997, pp. 1735–1780.

[27] S. Hochreiter, Y. Bengio, P. Frasconi, and J. Schmidhuber. Gradient flow in
recurrent nets: the difficulty of learning long-term dependencies. 2001. In A
Field Guide to Dynamical Recurrent Neural Networks. IEEE Press.

[28] J.J. Hopfield. Neural networks and physical systems with emergent collective
computational abilities. 1982. Proceedings of the national academy of sciences
79, no. 8. pp. 2554–2558.

[29] K. Karhunen. Über lineare Methoden in der Wahrscheinlichkeitsrechnung. 1947.
Sana, Vol 37.

[30] S. Khandelwal, B. Lecouteux, and L. Besacier. Comparing GRU and LSTM for
Automatic Speech Recognition. 2016. Ph.D. dissertation, LIG.

[31] A. Krizhevsky, I. Sutskever, and G.E. Hinton. Imagenet classification with deep
convolutional neural networks. 2012. In Advances in neural information process-
ing systems. pp. 1097–1105.

[32] S. Lawrence, C.L. Giles and A.C. Tsoi. Lessons in neural network training:
Overfitting may be harder than expected. 1997. In AAAI/IAAI. pp. 540–545.

[33] Y. LeCun, B. Boser, J.S. Denker, D. Henderson, R.E. Howard, W. Hubbard,
and L.D. Jackel. Backpropagation applied to handwritten zip code recognition.
1989. Neural computation 1, no. 4. pp 541–551.

[34] Y. Lei, N. Scheffer, L. Ferrer, and M. McLaren. A novel scheme for speaker
recognition using a phonetically-aware deep neural network. 2014. Acoustics,
Speech and Signal Processing (ICASSP). pp. 1695–1699.

[35] R.P. Lippmann. Review of neural networks for speech recognition. 1989. Neural
computation 1, no. 1. pp. 1–38.

[36] B. Logan. Mel Frequency Cepstral Coefficients for Music Modeling. 2000. IS-
MIR. Vol. 270. pp. 1–11.

[37] Y. Lukic, C. Vogt, O. Dürr, and T. Stadelmann. Speaker identification and
clustering using convolutional neural networks. 2016. In 2016 IEEE 26th Inter-
national Workshop on Machine Learning for Signal Processing (MLSP), Vietri
sul Mare, Italy, 13–16 September 2016. IEEE.

[38] J. Lyons. python_speech_features.
https://github.com/jameslyons/python_speech_features

https://github.com/jameslyons/python_speech_features

36

[39] E. MacAskill. "Did ’Jihadi John’ kill Steven Sotloff?". 2 September
2014. The Guardian. https://www.theguardian.com/media/2014/sep/02/

steven-sotloff-video-jihadi-john

[40] M. Mahoney. Large text compression benchmark.
http://www.mattmahoney.net/dc/text.html

[41] J. Makhoul, S. Roucos, and H. Gish. Vector quantization in speech coding.
1985. Proceedings of the IEEE 73, no. 11. pp. 1551–1588.

[42] J. Markel and A. Gray Jr. Linear Prediction of Speech. 1976. Springer–Verlag.

[43] W.S. McCulloch and W. Pitts. A logical calculus of the ideas immanent in ner-
vous activity. 1943. The bulletin of mathematical biophysics 5, no. 4. pp. 115–
133.

[44] M. Mohri, A. Rostamizadeh, & A. Talwalkar. Foundations of machine learning.
2012. MIT press.

[45] L. Muda, M. Begam, & I. Elamvazuthi. Voice recognition algorithms using
mel frequency cepstral coefficient (MFCC) and dynamic time warping (DTW)
techniques. 2010. Journal of Computing, Vol. 2, Issue 3, March.

[46] D. Nguyen-Tuong, and J. Peters. Model learning for robot control: a survey.
2011. Cognitive processing 12, no. 4. pp. 319–340.

[47] Nuance. Multimodal voice & behavioral biometric authentication technology.
Retrieved 18 October 2018.
https://www.nuance.com/omni-channel-customer-engagement/

security/identification-and-verification.html

[48] L.R. Rabiner. A tutorial on hidden Markov models and selected applications in
speech recognition. 1989. Proceedings of the IEEE 77, no. 2. pp. 257–286.

[49] D. Reynolds. Speaker identification and verification using Gaussian mixture
speaker models. 1995. Speech communication, 17(1), pp. 91–108.

[50] D. Reynolds. Automatic speaker recognition using Gaussian mixture speaker
models. 1995. The Lincoln Laboratory Journal.

[51] H. Robbins and S. Monro. A Stochastic Approximation Method. 1951. The
Annals of Mathematical Statistics 22, no 3. pp. 400–407.

[52] R.C. Rose and D.A. Reynolds. Text independent speaker identification using
automatic acoustic segmentation. 1990. Proc. ICASSP, vol. 90, pp. 293–296.

https://www.theguardian.com/media/2014/sep/02/steven-sotloff-video-jihadi-john
https://www.theguardian.com/media/2014/sep/02/steven-sotloff-video-jihadi-john
http://www.mattmahoney.net/dc/text.html
https://www.nuance.com/omni-channel-customer-engagement/security/identification-and-verification.html
https://www.nuance.com/omni-channel-customer-engagement/security/identification-and-verification.html

37

[53] D. O’Shaughnessy. Speech communication: human and machine. 1987. Univer-
sities press. p. 150.

[54] H. Sakoe and S. Chiba. Dynamic programming algorithm optimization for spo-
ken word recognition. 1978. IEEE transactions on acoustics, speech, and signal
processing 26, no. 1. pp. 43–49.

[55] W.S. Sarle. Stopped training and other remedies for overfitting. 1996. Comput-
ing science and statistics, pp. 352–360.

[56] J. Schmalenstroeer and R. Haeb-Umbach. Online speaker change detection by
combining bic with microphone array beamforming. 2006. Ninth International
Conference on Spoken Language Processing.

[57] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever and R. Salakhutdinov.
Dropout: a simple way to prevent neural networks from overfitting. 2014. The
Journal of Machine Learning Research 15, no. 1. pp. 1929–1958.

[58] S.S. Stevens, J. Volkmann, & E.B. Newman. A scale for the measurement of
the psychological magnitude pitch. 1937. The Journal of the Acoustical Society
of America, 8 no. 3, pp. 185–190.

[59] S. Tranter and D. Reynolds. An overview of automatic speaker diarization sys-
tems. 2006. IEEE Transactions on audio, speech, and language processing 14,
no. 5, pp. 1557–1565.

[60] G. Tsoumakas, and I. Katakis. Multi-label classification: An overview. 2007.
International Journal of Data Warehousing and Mining (IJDWM) 3, no. 3.
pp. 1–13.

[61] O. Vinyals, G. Friedland. Towards semantic analysis of conversations: A system
for the live identification of speakers in meetings. 2008. Semantic Computing,
IEEE International Conference, pp. 426–431.

[62] P. Werbos. Beyond Regression: New Tools for Prediction and Analysis in the
Behavioral Sciences. 1974. Ph. D. dissertation, Harvard University.

[63] P. Werbos. Backpropagation through time: what it does and how to do it. 1990.
Proceedings of the IEEE 78, no. 10. pp. 1550–1560.

[64] J. Wu, H. Qin, Y. Hua, & L. Fan. Pitch Estimation and Voicing Classifica-
tion Using Reconstructed Spectrum from MFCC. 2018. IEICE Transactions on
Information and Systems 101, no. 2: pp. 556–559.

[65] S.J. Young and S. Young. The HTK hidden Markov model toolkit: Design and
philosophy. 1993. University of Cambridge, Department of Engineering.

	Introduction
	Speaker recognition
	Frequency spectrum
	Mel-frequency cepstrum

	Machine learning
	Supervised learning
	Artificial neural networks
	Backpropagation
	Multi-label classification
	Overfitting and regularization
	Recurrent neural networks

	Implemented method
	Evaluation
	Datasets
	Evaluation metrics
	Results

	Conclusion
	Future work

	References

